【題目】海船以5海里/小時的速度向正東方向行駛,在A處看見燈塔B在海船的北偏東60°方向,2小時后船行駛到C處,發(fā)現(xiàn)此時燈塔B在海船的北偏西45°方向,求此時燈塔B到C處的距離.

【答案】解:如圖,過B點作BD⊥AC于D.

∴∠DAB=90°﹣60°=30°,∠DCB=90°﹣45°=45°.
設(shè)BD=x,在Rt△ABD中,AD= = x,
在Rt△BDC中,BD=DC=x,BC= ,
∵AC=5×2=10,
x+x=10.
得x=5( ﹣1).
∴BC= 5( ﹣1)=5( )(海里).
答:燈塔B距C處 海里.
【解析】由已知可得△ABC中∠BAC=30°,∠BCA=45°且AC=10海里.要求BC的長,可以過B作BD⊥BC于D,先求出AD和CD的長.轉(zhuǎn)化為運用三角函數(shù)解直角三角形.
【考點精析】利用關(guān)于方向角問題對題目進行判斷即可得到答案,需要熟知指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,給出下列說法:①abc>0;②方程ax2+bx+c=0的根為x1=﹣1,x2=3;③6a﹣b+c<0;④a﹣am2>bm﹣b,且m﹣1≠0,其中正確的說法有(

A.①②③
B.②③④
C.①②④
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=﹣ x﹣1與反比例函數(shù) (x<0)的圖象交于點A,與x軸相交于點B,過點B作x軸垂線交雙曲線于點C,若AB=AC,則k的值為(

A.﹣2
B.﹣4
C.﹣6
D.﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向上,在船B的北偏西37°方向上,AP=30海里.

(1)尺規(guī)作圖:過點P作AB所在直線的垂線,垂足為E(要求:保留作圖痕跡,不寫作法);
(2)求船P到海岸線MN的距離(即PE的長);
(3)若船A、船B分別以20海里/時、15海里/時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船P處.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:
①abc<0;② >0;③ac﹣b+1=0;④OAOB=﹣
其中正確結(jié)論的個數(shù)是(

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D作勻速運動,那么△ABP的面積y與點P運動的路程x之間的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為強化安全意識,某校擬在周一至周五的五天中隨機選擇2天進行緊急疏散演練,請完成下列問題:
(1)周三沒有被選擇的概率;
(2)選擇2天恰好為連續(xù)兩天的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中有5個完全相同的小球,球上分別標(biāo)著點A(-2,0),B(1,0),C(4,0),D(0,-6),E(-2,3).從袋子中一次性隨機摸出3個球,這3個球分別代表的點恰好能確定一條拋物線(對稱軸平行于y軸)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的MN這層上曬太陽.( 取1.73)

(1)求樓房的高度約為多少米?
(2)過了一會兒,當(dāng)α=45°時,問小貓能否還曬到太陽?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案