【題目】如圖,△ACB和△DCE均為等腰三角形,點(diǎn)A,D,E在同一直線(xiàn)上,連接BE.
(1)如圖1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求證:AD=BE;
②求∠AEB的度數(shù).
(2)如圖2,若∠ACB=∠DCE=120°,CM為△DCE中DE邊上的高,BN為△ABE中AE邊上的高,試證明:AE=CM+BN.
【答案】(1)①證明見(jiàn)解析;②80°;(2)證明見(jiàn)解析.
【解析】
試題分析:(1)①通過(guò)角的計(jì)算找出∠ACD=∠BCE,再結(jié)合△ACB和△DCE均為等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可證出△ACD≌△BCE,由此即可得出結(jié)論AD=BE;
②結(jié)合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通過(guò)角的計(jì)算即可算出∠AEB的度數(shù);
(2)根據(jù)等腰三角形的性質(zhì)結(jié)合頂角的度數(shù),即可得出底角的度數(shù),利用(1)的結(jié)論,通過(guò)解直角三角形即可求出線(xiàn)段AD、DE的長(zhǎng)度,二者相加即可證出結(jié)論.
試題解析:(1)①證明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.
∵△ACB和△DCE均為等腰三角形,∴AC=BC,DC=EC.
在△ACD和△BCE中,∵AC=BC,∠ACD=∠BCE,DC=EC,∴△ACD≌△BCE(SAS),∴AD=BE.
②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.
∵點(diǎn)A,D,E在同一直線(xiàn)上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.
∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.
(2)證明:∵△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.
∵CM⊥DE,∴∠CMD=90°,DM=EM.
在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=CM.
∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.
在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.
∵AD=BE,AE=AD+DE,∴AE=BE+DE=CM+BN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,若AE⊥BC,∠ADC=65°,則∠ABC的度數(shù)為( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠(chǎng)商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷(xiāo)過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(萬(wàn)件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=-2x+100.(利潤(rùn)=售價(jià)-制造成本)
(1)寫(xiě)出每月的利潤(rùn)z(萬(wàn)元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),廠(chǎng)商每月能獲得350萬(wàn)元的利潤(rùn)?當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),廠(chǎng)商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)根據(jù)相關(guān)部門(mén)規(guī)定,這種電子產(chǎn)品的銷(xiāo)售單價(jià)不能高于32元,如果廠(chǎng)商要獲得每月不低于350萬(wàn)元的利潤(rùn),那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(3,2)、(﹣1,0),若將線(xiàn)段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BA′,則點(diǎn)A′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)所有學(xué)生參加2011年初中畢業(yè)英語(yǔ)口語(yǔ)、聽(tīng)力自動(dòng)化考試,我們從中隨機(jī)抽取了部分學(xué)生的考試成績(jī),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:
(說(shuō)明:A級(jí):25分~30分;B級(jí):20分~24分;C級(jí):15分~19分;D級(jí):15分以下)
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中D級(jí)所占的百分比是;
(3)扇形統(tǒng)計(jì)圖中A級(jí)所在的扇形的圓心角度數(shù)是;
(4)若該校九年級(jí)有850名學(xué)生,請(qǐng)你估計(jì)全年級(jí)A級(jí)和B級(jí)的學(xué)生人數(shù)共約為人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)P,點(diǎn)Q分別代表兩個(gè)小區(qū),直線(xiàn)l代表兩個(gè)小區(qū)中間的一條公路.根據(jù)居民出行的需要,計(jì)劃在公路l上的某處設(shè)置一個(gè)公交站點(diǎn).
①若考慮到小區(qū)P居住的老年人較多,計(jì)劃建一個(gè)離小區(qū)P最近的車(chē)站,請(qǐng)?jiān)诠穕上畫(huà)出車(chē)站的位置(用點(diǎn)M表示);
②若考慮到修路的費(fèi)用問(wèn)題,希望車(chē)站的位置到小區(qū)P和小區(qū)Q的距離之和最小,請(qǐng)?jiān)诠穕上畫(huà)出車(chē)站的位置(用點(diǎn)N表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com