【題目】已知點P位于x軸上方,到x軸的距離為2,到y軸的距離為5,則點P坐標為( )
A. (2,5)B. (5,2)C. (2,5)或(-2,5)D. (5,2)或(-5,2)
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,若△ABC在第一象限,則△ABC關于x軸對稱的圖形所在的位置是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】測量計算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點處觀測旗桿頂點A的仰角為50°,觀測旗桿底部B點的仰角為45°,(可用的參考數據:sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm. 射線AG//BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設運動時間為t(s).
(1)連接EF,當EF經過AC邊的中點D時,求證:△ADE≌△CDF;
(2)填空:當t為_________s時,四邊形ACFE是菱形;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若(x+m)(x+n)=x2 -6x+5,則( 。
A.m , n同時為負
B.m , n同時為正
C.m , n異 號
D.m , n異號且絕對值小 的為正
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探究:
1.新知學習
若把將一個平面圖形分為面積相等的兩個部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
2.解決問題
已知等邊三角形ABC的邊長為2.
(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;
(3)如圖三,已知D為BC的中點,連接AD,M為AB上的一點(0<AM<1),E是DC上的一點,連接ME,ME與AD交于點O,且S△MOA=S△DOE.
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知BD是矩形ABCD的對角線.
(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).
(2)連結BE,DF,問四邊形BEDF是什么四邊形?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商品的進價為800元,出售標價為1200元,后來由于該商品積壓,商店準備打折銷售,要保證利潤率不低于5%,該商品最多可打 ( )
A. 9折B. 8折C. 7折D. 6折
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩家草莓采摘園的草莓品質相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為(元),在乙采摘園所需總費用為(元),圖中折線OAB表示與x之間的函數關系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克 元;
(2)求、與x的函數表達式;
(3)在圖中畫出與x的函數圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com