【題目】某路公交車起點站設在一居民小區(qū)附近,為了解高峰時段從該起點站乘車出行的人數(shù),隨機抽查了高峰時段10個班次從該起點站乘車的人數(shù),結(jié)果如下:20、23、26、25、29、28、30、25、21、23.如果在高峰時段從該起點站共發(fā)車60個班次,那么估計在高峰時段從該起點站乘該路車出行的乘客一共有________.

【答案】1500

【解析】

此題首先計算隨機抽查的10個班次的乘車人數(shù)的平均人數(shù),然后利用樣本去估計總體的思想即可求出60個班次乘該路車出行的人數(shù).

10個班次的平均人數(shù)為:(20+23+26+25+29+28+30+25+21+23)=25(人)

∴乘該路車出行的人數(shù)為60×25=1500(人),

故答案為:1500.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直角梯形OABC的邊OAy軸的正半軸上,OCx軸的正半軸上,OAAB=2,OC=3,過點BBDBC,交OA于點D.將DBC繞點B按順時針方向旋轉(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于EF

(1)求經(jīng)過A、B、C三點的拋物線的解析式;

(2)當BE經(jīng)過(1)中拋物線的頂點時,求CF的長;

(3)連結(jié)EF,設BEFBFC的面積之差為S,問:當CF為何值時S最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】p,q都是實數(shù),p<q.我們規(guī)定:滿足不等式pxq的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[p,q].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:pxq,pyq,我們就稱此函數(shù)是閉區(qū)間[p,q]上的閉函數(shù).反比例函數(shù)y=是閉區(qū)間[1,2019]上的閉函數(shù)?請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)y=的圖象交于C、D兩點,DEx軸于點E,已知C點的坐標是(﹣6,﹣1),DE=3.

(1)求反比例函數(shù)與一次函數(shù)的解析式.

(2)根據(jù)圖象直接回答:當x為何值時,一次函數(shù)的值小于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t

(分)之間的關系如圖所示,下列結(jié)論:

甲步行的速度為60/分;

乙走完全程用了30分鐘;

乙用16分鐘追上甲;

乙到達終點時,甲離終點還有320

其中正確的結(jié)論有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知△ABC頂點坐標分別為A(03),B(11),C(3,﹣1),△DEF與△ABC關于y軸對稱,且A,B,C依次對應D,EF

(1)請寫出D,E,F的坐標.

(2)在平面直角坐標系中畫出△ABC和△DEF.

(3)經(jīng)過計算△DEF各邊長度,發(fā)現(xiàn)DE、EF、FD滿足什么關系式,寫出關系式.

(4)求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)戶承包荒山種了44棵蘋果樹.現(xiàn)在進入第三年收獲期.收獲時,先隨意摘了5棵樹上的蘋果,稱得每棵樹摘得的蘋果重量如下(單位:千克)35 35 34 39 37

(1)在這個問題中,總體指的是?個體指的是?樣本是?樣本容量是?

(2)試根據(jù)樣本平均數(shù)去估計總體情況,你認為該農(nóng)戶可收獲蘋果大約多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有兩條互相垂直的公路,A廠離公路的距離為2千米,離公路的距離為5千米;B廠離公路的距離為11千米,離公路的距離為4千米;現(xiàn)在要在公路上建造一倉庫P,使A廠到P倉庫的距離與B廠到P倉庫的距離相等,求倉庫P的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數(shù)圖象如圖所示.

1)求關于的函數(shù)解析式;

2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?

查看答案和解析>>

同步練習冊答案