【題目】如圖,△ABC在正方形網(wǎng)格中,若B(﹣3,﹣1),按要求回答下列問題:
(1)在圖中建立正確的平面直角坐標系;
(2)根據(jù)所建立的坐標系,寫出A和C的坐標;
(3)求△ABC的周長.
【答案】(1)如圖所示見解析;(2)A(0,3)C(1,1);(3)△ABC的周長為.
【解析】
(1)由B點坐標可得B點向上平移1個單位長度再向右平移3個單位長度得到原點,即可確定平面直角坐標系;
(2)由平面直角坐標系寫出點的坐標即可;
(3)分別以AB、BC、CA為直角三角形的斜邊建立直角三角形,再利用勾股定理計算出三邊再求周長即可.
(1)如圖所示:建立平面直角坐標系;
(2)根據(jù)坐標系可得出:A(0,3)C(1,1);
(3)分別以AB、BC、CA為直角三角形的斜邊建立直角三角形:Rt△ADC、Rt△CEB、 Rt△AFB,由勾股定理得:AC=,所以△ABC的周長為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,動點M從A點出發(fā),以的速度沿線段AB向點B運動,動點N從B點出發(fā),以的速度沿線段BC向點C運動;點M與點N同時出發(fā),且當M點運動到B點時,M,N兩點同時停止運動設點M的運動時間為,連接MN,將沿MN折疊,使點B落在點處,得到,若,則t的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,Rt△ABC≌Rt△DFE,其中∠ACB=∠DFE=90°,BC=EF.
(1)若兩個三角形按圖2方式放置,AC、DF交于點O,連接AD、BO,則AF與CD的數(shù)量關系為 ,BO與AD的位置關系為 ;
(2)若兩個三角形按圖3方式放置,其中C、B(D)、F在一條直線上,連接AE,M為AE中點,連接FM、CM.探究線段FM與CM之間的關系,并證明;
(3)若兩個三角形按圖4方式放置,其中B、C(D)、F在一條直線上,點G、H分別為FC、AC的中點,連接GH、BE交于點K,求證:BK=EK.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,經(jīng)過原點O的拋物線(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).
(1)求這條拋物線的表達式;
(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;
(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸,y軸分別交于A,B兩點,點為直線上一點,直線過點C.
求m和b的值;
直線與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動設點P的運動時間為t秒.
①若點P在線段DA上,且的面積為10,求t的值;
②是否存在t的值,使為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的轉盤,分成三個相同的扇形,指針位置固定轉動轉盤后任其自由停止,其中的某個扇形會恰好停在指針所指的位置,并相應得到一個數(shù)(指針指向兩個扇形的交線時,當作指向右邊的扇形).
(1)求事件“轉動一次,得到的數(shù)恰好是0”發(fā)生的概率;
(2)寫出此情景下一個不可能發(fā)生的事件.
(3)用樹狀圖或列表法,求事件“轉動兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對值相等”發(fā)生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,D是弧BC的中點,過點D作⊙O的切線交AC的延長線于點E,DE=4,CE=2.
(1)求證:DE⊥AE;
(2)求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)現(xiàn)有5個質地、大小完全相同的小球上分別標有數(shù)字﹣1,﹣2,1,2,3.先將標有數(shù)字﹣2,1,3的小球放在第一個不透明的盒子里,再將其余小球放在第二個不透明的盒子里.現(xiàn)分別從兩個盒子里各隨即取出一個小球.
(1)請利用列表或畫樹狀圖的方法表示取出的兩個小球上數(shù)字之和所有可能的結果;
(2)求取出的兩個小球上的數(shù)字之和等于0的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,則∠BAE的度數(shù)為何?( 。
A. 115 B. 120 C. 125 D. 130
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com