如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A、B的坐標(biāo)分別為A(0,4)和B(-2,0),連接AB.
(1)現(xiàn)將△AOB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△AO1B1,請(qǐng)畫(huà)出△AO1B1,并直接寫(xiě)出點(diǎn)B1、O1的坐標(biāo)(注:不要求證明);
(2)求經(jīng)過(guò)B、A、O1三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)關(guān)系式,并畫(huà)出拋物線的略圖.
(1)如圖,畫(huà)出△AO1B1;
B1(4,2),O1(4,4);(4分)

(2)設(shè)所求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式為y=a(x-m)2+n,
由AO1x軸,得m=2.
∴y=a(x-2)2+n.
∵拋物線經(jīng)過(guò)點(diǎn)A、B,
4a+n=4
16a+n=0
,
解得
a=-
1
3
n=
16
3
,
∴所求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式為y=-
1
3
(x-2)2+
16
3
,
即y=-
1
3
x2+
4
3
x+4.(9分)
所畫(huà)拋物線圖象如圖所示.(11分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2-k+m與x軸交于A(1,0),B(x2,0),與y軸負(fù)半軸交于點(diǎn)C,AB•OC=6,求拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱軸為直線x=-1,B(1,0),C(0,-3).
(1)求二次函數(shù)y=ax2+bx+c(a≠0)的解析式;
(2)在拋物線對(duì)稱軸上是否存在一點(diǎn)P,使點(diǎn)P到A、C兩點(diǎn)距離之差最大?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(0,-3),且頂點(diǎn)P的坐標(biāo)為(1,-4),
(1)求這個(gè)函數(shù)的關(guān)系式;
(2)試問(wèn)x為何值時(shí),函數(shù)y的值大于0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)寫(xiě)出y>0時(shí),x的取值范圍______;
(2)寫(xiě)出y隨x的增大而減小的自變量x的取值范圍______;
(3)求函數(shù)y=ax2+bx+c的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c的圖象的一部分如圖所示.已知它的頂點(diǎn)M在第二象限,且經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(0,1).
(1)試求a,b所滿足的關(guān)系式;
(2)設(shè)此二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為C,當(dāng)△AMC的面積為△ABC面積的
5
4
倍時(shí),求a的值;
(3)是否存在實(shí)數(shù)a,使得△ABC為直角三角形?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店購(gòu)進(jìn)一批單價(jià)為20元的日用商品,如果以單價(jià)30元銷(xiāo)售那么半月內(nèi)可售出400件,根據(jù)銷(xiāo)售經(jīng)驗(yàn),推廣銷(xiāo)售單價(jià)會(huì)導(dǎo)致銷(xiāo)售量的減少,即銷(xiāo)售單價(jià)每提高1元,銷(xiāo)售量相應(yīng)減少20件.
(1)銷(xiāo)售單價(jià)提高多少元,可獲利4480元.
(2)如何提高售價(jià),才能在半月內(nèi)獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫(xiě)出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PFDE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平行四邊形ABCD中,過(guò)點(diǎn)C作CE⊥CD交AD于點(diǎn)E,將線段EC繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到線段EF(如圖1)
(1)在圖1中畫(huà)圖探究:
①當(dāng)P1為射線CD上任意一點(diǎn)(P1不與C重合)時(shí),連接EP1;繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到線段EG1.判斷直線FG1與直線CD的位置關(guān)系,并加以證明;
②當(dāng)P2為線段DC的延長(zhǎng)線上任意一點(diǎn)時(shí),連接EP2,將線段EP2繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°得到線段EG2.判斷直線G1G2與直線CD的位置關(guān)系,畫(huà)出圖形并直接寫(xiě)出你的結(jié)論.
(2)若AD=6,tanB=
4
3
,AE=1,在①的條件下,設(shè)CP1=x,S△P1FG1=y,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案