(本題滿分10分)某廠工人小王某月工作的部分信息如下:

信息一:工作時間:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25天;

信息二:生產(chǎn)甲、乙兩種產(chǎn)品,并且按規(guī)定每月生產(chǎn)甲產(chǎn)品的件數(shù)不少于60件.

生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關(guān)系見下表:

生產(chǎn)甲產(chǎn)品件數(shù)(件)

生產(chǎn)乙產(chǎn)品件數(shù)(件)

所用總時間(分)

10

10

350

30

20

850

信息三:按件計酬,每生產(chǎn)一件甲產(chǎn)品可得1.50元,每生產(chǎn)一件乙產(chǎn)品可得2.80元.

根據(jù)以上信息,回答下列問題:

1.(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分?

2.(2)小王該月最多能得多少元?此時生產(chǎn)甲、乙兩種產(chǎn)品分別多少件?

 

【答案】

 

1.(1)解:設(shè)生產(chǎn)一件甲種產(chǎn)品需分,生產(chǎn)一件乙種產(chǎn)品需分,由題意得:

………………………………………………………2分

解這個方程組得:

∴生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分.

2.(2)解:設(shè)生產(chǎn)甲種產(chǎn)品用分,則生產(chǎn)乙種產(chǎn)品用分,則生產(chǎn)甲種產(chǎn)品 件,生產(chǎn)乙種產(chǎn)品件.…………………………………………………5分

……………………………………………………………………7分

,得…………………………………………………………………8分

由一次函數(shù)的增減性,當取得最大值,此時 (元)………………………………………………………………………………………9分

此時甲有(件),乙有:(件)……10分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)某超市開辟一個精品蔬菜柜,其中每天從菜農(nóng)手中購進一種新鮮蔬菜200千克,其進貨成本(含運輸費)是每千克1元,根據(jù)超市規(guī)定,這種蔬菜只能當天銷售,并且每千克的銷售價不能超過8元,一天內(nèi)沒有銷售完的蔬菜只能報廢,而且這種新鮮蔬菜每天的損耗率是10%,根據(jù)市場調(diào)查這種蔬菜每天在市場上的銷售量y(單位:千克y≥0)與每千克的銷售價x(元)之間的函數(shù)關(guān)系如圖所示:

1.(1)求出每天銷售量y與每千克銷售價之間的函數(shù)關(guān)系式;

2.(2)根據(jù)題中的信息分析,每天銷售利潤最少是多少元?最多是多少元?

3.(3)當每千克銷售價為多少元時,每天的銷售利潤不低于640元?

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)

某同學根據(jù)圖1所示的程序計算后,畫出了圖2中y與x之間的函數(shù)圖象,點A在圖象上.

(1)結(jié)合圖1、圖2,求出當0≤x≤3時,y與x之間的函數(shù)關(guān)系式為________________;當x>3時,y與x之間的函數(shù)關(guān)系式為________________.

(2)當y=1.5時,求自變量x的值.

(3)M(m,n)為曲線上一動點,其中m>3,過點M作直線MB∥y軸,交x軸于點B,過點A作直線AC∥x軸交y軸于C,交直線MB于點D.當四邊形OADM的面積為6時,判斷BM與DM的大小關(guān)系,并說明理由.

 


                  

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)某商店代銷一批季節(jié)性服裝,每套代銷成本40元,第一個月每套銷售定價為52元時,可售出180套;應(yīng)市場變化調(diào)整第一個月的銷售價,預(yù)計銷售定價每增加1元,銷售量將減少10套。

(1)若設(shè)第二個月的銷售定價每套增加x元,填寫下表。

時間

第一個月

第二個月

每套銷售定價(元)

 

 

銷售量(套)

 

 

 

(2)若商店預(yù)計要在這兩個月的代銷中獲利4160元,則第二個月銷售定價每套多少元?

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)
某同學根據(jù)圖1所示的程序計算后,畫出了圖2中y與x之間的函數(shù)圖象,點A在圖象上.
(1)結(jié)合圖1、圖2,求出當0≤x≤3時,y與x之間的函數(shù)關(guān)系式為________________;當x>3時,y與x之間的函數(shù)關(guān)系式為________________.
(2)當y=1.5時,求自變量x的值.
(3)M(m,n)為曲線上一動點,其中m>3,過點M作直線MB∥y軸,交x軸于點B,過點A作直線AC∥x軸交y軸于C,交直線MB于點D.當四邊形OADM的面積為6時,判斷BM與DM的大小關(guān)系,并說明理由.

 

 
 


                 

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆山東省濱州市濱城區(qū)九年級第一學期期末測試數(shù)學卷 題型:解答題

(本題滿分10分)

    某超市的某種商品現(xiàn)在的售價為每件50元,每周可以賣出500件,F(xiàn)市場調(diào)查反映:如果調(diào)整價格,每漲價1元,每周要少賣出10件。已知該種商品的進價為每件40元,問如何定價,才能使利潤最大?最大利潤是多少?(每件商品的利潤=售價-進價)

 

查看答案和解析>>

同步練習冊答案