【題目】如圖1,小明將一張矩形紙片沿對(duì)角線剪開,得到兩張三角形紙片(如圖2),量得他們的斜邊長(zhǎng)為10cm,較短直角邊長(zhǎng)為5cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,但點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合(在圖3至圖6中統(tǒng)一用F表示),小明在對(duì)這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了三個(gè)問(wèn)題,請(qǐng)你幫助解決.
(1)將圖3中的△ABF沿BD向右平移到圖4的位置,使點(diǎn)B與點(diǎn)F 重合,請(qǐng)你求出平移的距離;
(2)將圖3中的△ABF繞點(diǎn)F順時(shí)針?lè)较蛐D(zhuǎn)30°到圖5的位置,A1F交DE于點(diǎn)G,請(qǐng)你求出線段FG的長(zhǎng)度;
(3)將圖3中的△ABF沿直線AF翻折到圖6的位置,AB1交DE于點(diǎn)H,請(qǐng)證明:AH=DH
【答案】(1) 5cm;(2);(3)證明見解析.
【解析】
(1)根據(jù)題意,分析可得:圖形平移的距離就是線段BF的長(zhǎng),進(jìn)而在Rt△ABC中求得BF=5cm,即圖形平移的距離是5cm;
(2)在Rt△EFD中,求出FD的長(zhǎng),根據(jù)直角三角形的性質(zhì),可得:FG=FD,即可求得FG的值;
(3)借助平移的性質(zhì),經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,容易證明.
(1)圖形平移的距離就是線段BC的長(zhǎng),
∵在Rt△ABC中,斜邊長(zhǎng)為10cm,∠BAC=30°,
∴BC=5cm,
∴平移的距離為5cm.
(2)∵∠FA=30°,
∴∠,∠D=30°.
∴∠.
在RtEFD中,ED=10 cm,
∵FD=,
∴cm.
(3)△AHE與△中,∵,
∵FD=FA,所以EF=FB=FB1,∴,即AE=D.
又∵,
∴△≌△(AAS),
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線E:y2=4x的準(zhǔn)線為l,焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).
(1)求過(guò)點(diǎn)O,F(xiàn),且與l相切的圓的方程;
(2)過(guò)F的直線交拋物線E于A,B兩點(diǎn),A關(guān)于x軸的對(duì)稱點(diǎn)為A′,求證:直線A′B過(guò)定點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f(x0)=3,x0∈( , ),則sinx0的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 內(nèi)有一點(diǎn)M(2,1),過(guò)M的兩條直線l1 , l2分別與橢圓E交于A,C和B,D兩點(diǎn),且滿足 (其中λ>0,且λ≠1),若λ變化時(shí),AB的斜率總為 ,則橢圓E的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢(shì)如圖所示,為抑制房?jī)r(jià)過(guò)快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房?jī)r(jià)得到很好的抑制.
(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價(jià)y(萬(wàn)元/平方米)與月份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測(cè)第12月份該市新建住宅銷售均價(jià);
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個(gè)月份中,隨機(jī)抽取三個(gè)月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個(gè)月份的所屬季度,記不同季度的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 = x+ 中斜率和截距的最小二乘估計(jì)公式分別為:
= , = ﹣ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x2(1nx﹣a)+a,則下列結(jié)論中錯(cuò)誤的是( )
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (e為自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在(1,f(1))處的切線與直線4x+3ey+1=0互相垂直. (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若對(duì)任意x∈( ,+∞),(x+1)f(x)≥m(2x﹣1)恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)設(shè)g(x)= ,Tn=1+2[g( )+g( )+g( )+…+g( )](n=2,3…).問(wèn):是否存在正常數(shù)M,對(duì)任意給定的正整數(shù)n(n≥2),都有 + + +…+ <M成立?若存在,求M的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在數(shù)列{an}中,a1=4,an>0,前n項(xiàng)和為Sn , 若 .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列 的前n項(xiàng)和為Tn , 求Tn .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=4 ,點(diǎn)C為半圓AB上一動(dòng)點(diǎn),以BC為邊向⊙O外作正△BCD(點(diǎn)D在直線AB的上方),連接OD,則線段OD的長(zhǎng)( )
A.隨點(diǎn)C的運(yùn)動(dòng)而變化,最大值為4
B.隨點(diǎn)C的運(yùn)動(dòng)而變化,最大值為4
C.隨點(diǎn)C的運(yùn)動(dòng)而變化,最小值為2
D.隨點(diǎn)C的運(yùn)動(dòng)而變化,但無(wú)最值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com