【題目】計算:
(1)[x(x2-2x+3)-3x]÷x2;
(2)x(4x+3y)-(2x+y)(2x-y);
(3)5a2b÷·(2ab2)2;
(4)(a-2b-3c)(a-2b+3c).
【答案】(1)2x-4;(2)3xy+y2;(3)-60a3b4;(4)a2-4ab+4b2-9c2.
【解析】
(1)先算括號,再算除法即可;
(2)先算乘法,再合并同類項即可.
(3)先算乘方,再算除法和乘法即可;
(4)先變形為[(a-2b)-3c][(a-2b)+3c],再按平方差公式計算即可.
解:(1)原式=(x3-2x2+3x-3x)÷x2=(x3-2x2)÷x2=2x-4.
(2)原式=4x2+3xy-(4x2-y2)=4x2+3xy-4x2+y2=3xy+y2.
(3)原式=5a2b÷·4a2b4=-60a3b4.
(4)原式=[(a-2b)-3c][(a-2b)+3c]=(a-2b)2-(3c)2=a2-4ab+4b2-9c2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點E,F(xiàn),求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)
如圖,用兩段等長的鐵絲恰好可以分別圍成一個正五邊形和一個正六邊形,其中正五邊形的邊長為(),正六邊形的邊長為()cm(其中),求這兩段鐵絲的總長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在中秋節(jié)來臨前夕,購進(jìn)一種品牌月餅,每盒進(jìn)價是元.超市規(guī)定每盒售價不得少于元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當(dāng)售價定為每盒元時,每天可以賣出盒,每盒售價每提高元,每天要少賣出盒.
當(dāng)每盒售價定為多少元時,每天銷售的利潤(元)最大?最大利潤是多少?
為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于元.如果超市想要每天獲得元的利潤,那么超市每天銷售月餅多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為7的正方形ABCD中放入五個小正方形后形成一個中心對稱圖形,其中兩頂點E、F分別在邊BC、AD上,則放入的五個小正方形的面積之和為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,“主收1號”小麥的試驗田是邊長為am(a>1)的正方形去掉一個邊長為1m的正方形蓄水池后余下的部分,“豐收2號”小麥的試驗田是邊長為(a﹣1)m的正方形,兩塊試驗田的小麥都收獲了500kg.
(1)哪種小麥的單位面積產(chǎn)量高?
(2)若高的單位面積產(chǎn)量是低的單位面積產(chǎn)量的(kg)倍,求a的值
(3)利用(2)中所求的a的值,分解因式x2﹣ax﹣108=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AC=BC,∠C=120°,點D為AB邊的中點,∠EDF=60°,DE、DF分別交AC、BC與E、F點。
(1)如圖,若EF∥AB,求證DE=DF
(2)如圖,若EF與AB不平行,則問題(1)的結(jié)論是否成立?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com