【題目】如圖,已知函數(shù) 的圖象與x軸,y軸分別交于點(diǎn)A、B,與函數(shù)的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2,在x軸上有一點(diǎn)P(a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)的圖象于點(diǎn)C、D.

(1)求點(diǎn)M、點(diǎn)A的坐標(biāo);

(2)若OB=CD,求a的值,并求此時(shí)四邊形OPCM的面積.

【答案】(1)M(2,2),A (6,0);(2)5

【解析】

試題(1)點(diǎn)M在直線y=x的圖象上,且點(diǎn)M的橫坐標(biāo)為2,

得到點(diǎn)M的坐標(biāo)為(2,2),再把代入即可求得的值,則A的坐標(biāo)即可求得,

先確定點(diǎn)坐標(biāo)為,則 再表示出點(diǎn)坐標(biāo)為

點(diǎn)坐標(biāo)為,所以 然后解方程即可;根據(jù)四邊形的面積等于

試題解析:(1)∵點(diǎn)M在直線y=x的圖象上,且點(diǎn)M的橫坐標(biāo)為2,

∴點(diǎn)M的坐標(biāo)為(2,2),

M(2,2)代入y=x+b1+b=2,解得b=3,

∴一次函數(shù)表達(dá)式為

代入

A點(diǎn)的坐標(biāo)為

(2)代入

軸,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接運(yùn)動(dòng)會(huì),某校八年級(jí)學(xué)生開展了短跑比賽。甲、乙兩人同時(shí)從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度。

甲前一半的路程使用速度,另一半的路程使用速度;乙前一半的時(shí)間用速度,另一半的時(shí)間用速度。

(1)甲、乙二人從A地到達(dá)B地的平均速度分別為;則___________,____________

(2)通過計(jì)算說明甲、乙誰先到達(dá)B地?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,AC上的中線BD把三角形的周長(zhǎng)分為15㎝和30㎝的兩個(gè)部分,求:三角形的三邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,∠ABC=45°,AHBC于點(diǎn)H,點(diǎn)DAH上的一點(diǎn),且DH=HC,連接BD并延長(zhǎng)BDAC于點(diǎn)E,連接EH.

(1)請(qǐng)補(bǔ)全圖形;

(2)求證:△ABE是直角三角形;

(3)若BE=a,CE=b,求出SCEH:SBEH的值(用含有a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某縣政府為了迎接八一建軍節(jié),加強(qiáng)軍民共建活動(dòng),計(jì)劃從花園里拿出1430盆甲種花卉和1220盆乙種花卉,搭配成A、B兩種園藝造型共20個(gè),在城區(qū)內(nèi)擺放,以增加節(jié)日氣氛,已知搭配A、B兩種園藝造型各需甲、乙兩種花卉數(shù)如表所示:(單位:盆)

(1)某校某年級(jí)一班課外活動(dòng)小組承接了這個(gè)園藝造型搭配方案的設(shè)計(jì),問符合題意的搭配方案有幾種?請(qǐng)你幫忙設(shè)計(jì)出來.

(2)如果搭配及擺放一個(gè)A造型需要的人力是8人次,搭配及擺放一個(gè)B造型需要的人力是11人次,哪種方案使用人力的總?cè)舜螖?shù)最少,請(qǐng)說明理由.

造型數(shù)量花

A

B

甲種

80

50

乙種

40

90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC.若∠A=22.5°,CD=8cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解一元二次不等式

請(qǐng)按照下面的步驟,完成本題的解答.

解: 可化為

(1)依據(jù)兩數(shù)相乘,同號(hào)得正,可得不等式組① 或不等式組②________

(2)解不等式組①,得________

(3)解不等式組②,得________

(4)一元二次不等式 的解集為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=90°,A=30°,AB的垂直平分線分別交ABAC于點(diǎn)D,E.

(1)求證:AE=2CE;

(2)連接CD,請(qǐng)判斷BCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫出函數(shù)的圖象,利用圖象求解下列問題:

(1)求方程的解;

(2)求不等式的解集;

(3)若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案