【題目】如圖,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若動點D從B出發(fā),沿線段BA運動到點A為止(不考慮D與B,A重合的情況),運動速度為2cm/s,過點D作DE∥BC交AC于點E,連接BE,設(shè)動點D運動的時間為x(s),AE的長為y(cm).
(1)求y關(guān)于x的函數(shù)表達式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,△BDE的面積S有最大值?最大值為多少?
【答案】(1)(0<x<4);(2)當(dāng)x=2時,S△BDE最大,最大值為6cm2.
【解析】
(1)根據(jù)已知條件DE∥BC可以判定△ADE∽△ABC;然后利用相似三角形的對應(yīng)邊成比例求得;最后用x、y表示該比例式中的線段的長度;
(2)根據(jù)∠A=90°得出S△BDE=BDAE,從而得到一個面積與x的二次函數(shù),從而求出最大值;
(1)動點D運動x秒后,BD=2x.
又∵AB=8,∴AD=8-2x.
∵DE∥BC,∴,∴,
∴y關(guān)于x的函數(shù)關(guān)系式為(0<x<4).
(2)解:S△BDE==(0<x<4).
當(dāng)時,S△BDE最大,最大值為6cm2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線(k≠0)上.將正方形沿x軸負(fù)方向平移a個單位長度后,點C恰好落在該雙曲線上,則a的值是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=3x分別與雙曲線y=、y=(x>0)交于P、Q兩點,且OP=2OQ.
(1)求k的值.
(2)如圖2,若點A是雙曲線y= 上的動點,AB∥x軸,AC∥y軸,分別交雙曲線y=(x>0)于點B、C,連接BC.請你探索在點A運動過程中,△ABC的面積是否變化?若不變,請求出△ABC的面積;若改變,請說明理由;
(3)如圖3,若點D是直線y=3x上的一點,請你進一步探索在點A運動過程中,以點A、B、C、D為頂點的四邊形能否為平行四邊形?若能,求出此時點A的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象的頂點在原點,經(jīng)過點點在軸上,直線與軸交于點.
(1)求二次函數(shù)的解析式;
(2)點是拋物線上的點,過點作軸的垂線與直線交于點,求證:;
(3)當(dāng)時等邊三角形時,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD和四邊形DEFG為正方形,點E在線段DE上,點A,D,G在同一直線上,且AD=3,DE=1,連接AC,CG,AE,并延長AE交CG于點H.
(1)求sin∠EAC的值.
(2)求線段AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙,丁四個人做“擊鼓傳花”游戲,游戲規(guī)則是:第一次由甲將花隨機傳給乙、丙、丁三人中的某一人中的某一人,以后的每一次傳花都是由接到花的人隨機傳給其他三人中的某一人.
(1)甲第一次傳花時,恰好傳給乙的概率是 ;
(2)求經(jīng)過兩次傳花,花恰好回到甲手中的概率;
(3)經(jīng)過三次傳花,花落在丙手上的概率記作P1,落在丁手上的概率記作P2,則P1 P2(填“>”、“<”或者“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,∠EAF=45°.
(1)如圖,當(dāng)點E、F分別在邊BC、CD上,連接EF,求證:EF=BE+DF;
童威同學(xué)是這樣思考的,請你和他一起完成如下解答:證明:將△ADF繞點A順時針旋轉(zhuǎn)90°,得△ABG,所以△ADF≌△ABG.
(2)如圖,點M、N分別在邊AB、CD上,且BN=DM.當(dāng)點E、F分別在BM、DN上,連接EF,探究三條線段EF、BE、DF之間滿足的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)如圖,當(dāng)點E、F分別在對角線BD、邊CD上.若FC=2,則BE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于點G,下列結(jié)論:①;②AG=GC;③BE+DF=EF;④.其中正確的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com