【題目】紅府超市準(zhǔn)備代銷(xiāo)一款運(yùn)動(dòng)鞋,每雙的成本是110元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是130元時(shí),每天的銷(xiāo)售量是30雙,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出10雙(售價(jià)不得低于110元/雙),設(shè)每雙降低售價(jià)元(為正整數(shù)),每天的銷(xiāo)售利潤(rùn)為元
(1)求y與的函數(shù)關(guān)系式并直接寫(xiě)出自變量的取值范圍;
(2)每雙運(yùn)動(dòng)鞋的售價(jià)定為多少元時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1)y=(為整數(shù));(2)當(dāng)售價(jià)定為120或121元/千克時(shí),每天利潤(rùn)最大,最大利潤(rùn)為1320元.
【解析】試題分析:
(1)由題意可知銷(xiāo)售量為雙,每雙鞋的銷(xiāo)售利潤(rùn)為,結(jié)合利潤(rùn)=每雙鞋的利潤(rùn)×銷(xiāo)售量即可列出所求解析式;
(2)將(1)中所得解析式配方,并結(jié)合只能取整數(shù)即可求得所求答案.
試題解析:
(1)由題意可得: (為整數(shù));
(2)∵,
∴當(dāng)時(shí),y有最大值,
又∵只能取整數(shù),
∴當(dāng)或時(shí),
y最大=(元),
∴當(dāng)售價(jià)定為120或121元/千克時(shí),每天利潤(rùn)最大,最大利潤(rùn)為1320元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說(shuō),表示在數(shù)軸上數(shù)與數(shù)對(duì)應(yīng)點(diǎn)之間的距離.這個(gè)結(jié)論可以推廣為:表示在數(shù)軸上數(shù)與對(duì)應(yīng)點(diǎn)之間的距離.
例 已知,求的值.
解:在數(shù)軸上與原點(diǎn)距離為的點(diǎn)的對(duì)應(yīng)數(shù)為和,即的值為和.
例 已知,求的值.
解:在數(shù)軸上與的距離為點(diǎn)的對(duì)應(yīng)數(shù)為和,即的值為和.
仿照閱讀材料的解法,解決下列問(wèn)題:
(1)已知,求的值;
(2)已知,求的值;
(3)若數(shù)軸上表示的點(diǎn)在與之間,則的值為_(kāi)________;
(4)當(dāng)滿足_________時(shí),則的值最小,最小值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩城間的鐵路路程為1600千米,經(jīng)過(guò)技術(shù)改造,列車(chē)實(shí)施了提速,提速后比提速前速度增加了20千米/小時(shí),列車(chē)從甲城到乙城行駛時(shí)間減少4小時(shí),這條鐵路在現(xiàn)有條件下安全行駛速度不得超過(guò)140千米/小時(shí),請(qǐng)你用學(xué)過(guò)的知識(shí)說(shuō)明在這條鐵路的現(xiàn)有條件下列車(chē)是否還可以再提速。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類比學(xué)習(xí):一動(dòng)點(diǎn)沿著數(shù)軸先向右平移3個(gè)單位長(zhǎng)度,再向左平移2個(gè)單位長(zhǎng)度,相當(dāng)于向右平移1個(gè)單位長(zhǎng)度.用實(shí)數(shù)加法表示為3+(-2)=1.若坐標(biāo)平面上的點(diǎn)有如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移|a|個(gè)單位長(zhǎng)度),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移|b|個(gè)單位長(zhǎng)度),則把有序數(shù)對(duì){a,b}叫做這一平移的“平移量”,“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為{a,b}+{c,d}={a+c,b+d}.
解決問(wèn)題:
(1)計(jì)算:{3,1}+{1,2},{1,2}+{3,1}.
(2)動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到點(diǎn)A,再按照“平移量”{1,2}平移到點(diǎn)B;若先把動(dòng)點(diǎn)P按照“平移量”{1,2}平移到點(diǎn)C,再按照“平移量”{3,1}平移,最后的位置還是點(diǎn)B嗎?在圖①中畫(huà)出四邊形OABC.
(3)如圖②所示,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再?gòu)拇a頭P航行到碼頭Q(5,5),最后回到出發(fā)點(diǎn)O.請(qǐng)用“平移量”加法算式表示它的航行過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,點(diǎn)E是BC的中點(diǎn),點(diǎn)F在AD上,AF=6cm,BF=12cm,BD平分∠FBC,若點(diǎn)P,Q分別是AF,BC上點(diǎn),且CQ=2AP.若點(diǎn)P、Q、E、F為頂點(diǎn)的四邊形構(gòu)成平行四邊形,則AP的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數(shù);
(2)試判斷OE是否平分∠BOC,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為舉辦校園文化藝術(shù)節(jié),甲、乙兩班準(zhǔn)備給合唱同學(xué)購(gòu)買(mǎi)演出服裝(一人一套),兩班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供貨商給出的演出服裝的價(jià)格表:
購(gòu)買(mǎi)服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套以上 |
每套服裝的價(jià)格 | 60元 | 50元 | 40元 |
如果兩班單獨(dú)給每位同學(xué)購(gòu)買(mǎi)一套服裝,那么一共應(yīng)付5020元.
(1)甲、乙兩班聯(lián)合起來(lái)給每位同學(xué)購(gòu)買(mǎi)一套服裝,比單獨(dú)購(gòu)買(mǎi)可以節(jié)省多少錢(qián)?
(2)甲、乙兩班各有多少名同學(xué)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,直線AB:y=k1x+b1與直線AD:y=k2x+b2相交于點(diǎn)A(1,3),且點(diǎn)B坐標(biāo)為(0,2),直線AB交x軸負(fù)半軸于點(diǎn)C,直線AD交x軸正半軸于點(diǎn)D.
(1)求直線AB的函數(shù)解析式;
(2)若△ACD的面積為9,解不等式:k2x+b2>0;
(3)若點(diǎn)M為x軸一動(dòng)點(diǎn),當(dāng)點(diǎn)M在什么位置時(shí),使AM+BM的值最?求出此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某股民在上星期買(mǎi)進(jìn)某種股票1000股,每股100元,下表是本周每日該股票的漲跌情況 (單位:元):
(1)該股在本周內(nèi)最高價(jià)是每股多少元?最低價(jià)是每股多少元?
(2)星期三收盤(pán)時(shí),每股是多少元?
(3)已知買(mǎi)進(jìn)股票時(shí)需付成交額的1.5‰的手續(xù)費(fèi),賣(mài)出時(shí)需付成交額的1.5‰手續(xù)費(fèi)和 1‰的交易費(fèi),如果在星期五收盤(pán)前將股票一次性賣(mài)出,他的收益情況如何?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com