在△ABC中,已知AB=AC,∠A=120°,BC邊上的高線的長是5,則AB=
 
分析:根據(jù)等腰三角形三線合一的性質(zhì)可得到∠BAD的度數(shù),再根據(jù)三角函數(shù)即可求得AB的長.
解答:精英家教網(wǎng)解:如圖,由題意可知:等腰三角形ABC中,AD=5,∠BAC=∠CAD=
1
2
∠BAC=60°.
在直角三角形ABD中
∵AD=5,∠BAD=60°,
∴AB=AD÷cos∠BAD=5÷cos60°=10.
點(diǎn)評:本題考查了等腰三角形的性質(zhì)和解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各個(gè)內(nèi)角的度數(shù)是多少?
(2)如圖,將△ABC紙片沿MN折疊所得的粗實(shí)線圍成的圖形的面積與原△ABC的面積之比為3:4,且圖中3個(gè)陰影三角形的面積之和為12cm2,則重疊部分的面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•雅安)在△ABC中,已知∠A、∠B都是銳角,且sinA=
3
2
,tanB=1,則∠C的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,已知∠A=80°,則∠B、∠C的角平分線相交所成的鈍角為
130°
130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分線MN交AC于D.在下列結(jié)論中:①∠C=72°;②BD是∠ABC的平分線;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述結(jié)論中,正確的有
①②④⑤
①②④⑤
.(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,已知∠A=∠C-∠B,且∠A=70°,則∠B的度數(shù)=
20°
20°

查看答案和解析>>

同步練習(xí)冊答案