【題目】如圖1,菱形ABCD,,,連接對角線AC、BD交于點O,
如圖2,將沿DB平移,使點D與點O重合,求平移后的與菱形ABCD重合部分的面積.
如圖3,將繞點O逆時針旋轉(zhuǎn)交AB于點,交BC于點F,
求證:;
求出四邊形的面積.
【答案】證明見解析
【解析】
(1)先判斷出△ABD是等邊三角形,進(jìn)而判斷出△EOB是等邊三角形,即可得出結(jié)論;
(2)先判斷出 ≌△OBF,再利用等式的性質(zhì)即可得出結(jié)論;
(3)借助①的結(jié)論即可得出結(jié)論.
四邊形為菱形,,
,
為等邊三角形,
,,
∵AD//A′O,
∴∠A′OB=60°,
為等邊三角形,邊長,
重合部分的面積:,
在圖3中,取AB中點E,
由知,∠EOB=60°,∠E′OF=60°,
∴∠EOE′=∠BOF,
又∵EO=BO,∴∠OEE′=∠OBF=60°,
∴△OEE′≌△OBF,
∴EE′=BF,
∴BE′+BF=BE′+EE′=BE=2;
由知,在旋轉(zhuǎn)過程中始終有△OEE′≌△OBF,
∴S△OEE′=S△OBF,
S四邊形OE′BF =.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,分別以AC,BC為邊長,在三角形外作正方形ACFG和正方形BCED.若AC=4,AB=6,則EF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坐標(biāo)平面內(nèi),已知點A(0,3)、B(6,5),
(1)連接AB,在x軸上確定點P,使PA=PB(用尺規(guī)作圖,保留作圖痕跡,不寫作法),并求出P點坐標(biāo);
(2)點Q是x軸上的動點,求點Q與A、B兩點的距離之和的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達(dá)點E,此時他仰望兩棵大樹的頂點A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點B沿BC走向點C,行走一段時間后他到達(dá)點E,此時他仰望兩棵大樹的頂點A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點E的時間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中是真命題的是( )
A. 有兩邊和其中一邊的對角對應(yīng)相等的兩個三角形全等
B. 兩條平行直線被第三條直線所截,則一組同旁內(nèi)角的平分線互相垂直
C. 三角形的一個外角等于兩個內(nèi)角的和
D. 等邊三角形既是中心對稱圖形,又是軸對稱圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某農(nóng)戶發(fā)展養(yǎng)禽業(yè),準(zhǔn)備利用現(xiàn)有的34米長的籬笆靠墻AB(墻長為25米)圍成一個面積為120平方米的長方形養(yǎng)雞場,這個養(yǎng)雞場的長和寬各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B,F,C,E在直線l上(F,C之間不能直接測量),點A,D在l異側(cè),測得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:兩個二次項系數(shù)之和為1,對稱軸相同,且圖象與y軸交點也相同的二次函數(shù)互為友好同軸二次函數(shù)例如:的友好同軸二次函數(shù)為.
請你分別寫出,的友好同軸二次函數(shù);
滿足什么條件的二次函數(shù)沒有友好同軸二次函數(shù)?滿足什么條件的二次函數(shù)的友好同軸二次函數(shù)是它本身?
如圖,二次函數(shù):與其友好同軸二次函數(shù)都與y軸交于點A,點B、C分別在、上,點B,C的橫坐標(biāo)均為,它們關(guān)于的對稱軸的對稱點分別為,,連結(jié),,,CB.
若,且四邊形為正方形,求m的值;
若,且四邊形的鄰邊之比為1:2,直接寫出a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com