【題目】如圖①為Rt△AOB,∠AOB=90°,其中OA=3,OB=4.將AOB沿x軸依次以A,B,O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn).分別得圖②,圖③,…,則旋轉(zhuǎn)到圖⑩時直角頂點的坐標是_____.
【答案】(36,0).
【解析】∵∠AOB=90,OA=3,OB=4,
∴AB===5,
根據(jù)圖形,每3個圖形為一個循環(huán)組,3+5+4=12,
所以,圖⑨的直角頂點在x軸上,橫坐標為12×3=36,
所以,圖⑨的頂點坐標為(36,0),
又∵圖⑩的直角頂點與圖⑨的直角頂點重合,
∴圖⑩的直角頂點的坐標為(36,0).
故答案為:(36,0).
點睛: 本題考查了坐標與圖形的變化旋轉(zhuǎn),仔細觀圖形,判斷出旋轉(zhuǎn)規(guī)律“每3個圖形為一個循環(huán)組依次循環(huán),且下一組的第一個圖形與上一組的最后一個圖形的直角頂點重合”是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OF是∠MON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB.
(1)如圖1,當P、Q兩點都在射線ON上時,請直接寫出線段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當P和Q兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.
【答案】(1)AB=PB;(2)存在;(3)k=0.5.
【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問題;
(2)存在.證明方法類似(1);
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出當BA⊥OM時, 的值最小,最小值為0.5,由此即可解決問題;
試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(2)存在,理由:如圖2中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(3)連接BQ.
易證△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴ =,∵∠AOB=30°,∴當BA⊥OM時, 的值最小,最小值為0.5,∴k=0.5.
點睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.
【題型】解答題
【結(jié)束】
28
【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點P作PE⊥x軸,垂足為E,交直線l于點F.
(1)試求該拋物線表達式;
(2)如圖(1),若點P在第三象限,四邊形PCOF是平行四邊形,求P點的坐標;
(3)如圖(2),過點P作PH⊥y軸,垂足為H,連接AC.
①求證:△ACD是直角三角形;
②試問當P點橫坐標為何值時,使得以點P、C、H為頂點的三角形與△ACD相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】考古學家發(fā)現(xiàn)了一塊古代圓形陶器殘片如圖所示,為了修復(fù)這塊陶器殘片,需要找出圓心.
(1)請利用尺規(guī)作圖確定這塊殘片的圓心O;(保留作圖痕跡,不寫作法)
(2)寫出作圖的主要依據(jù):_______________________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程組解應(yīng)用題:
在首屆“一帶一路”國際合作高峰論壇舉辦之后,某工廠準備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知3件甲種商品與5件乙種商品的銷售收入相同,2件甲種商品比3件乙種商品的銷售收入多200元. 問甲、乙兩種商品的銷售單價分別是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:中,,求證:,下面寫出可運用反證法證明這個命題的四個步驟:
①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個步驟正確的順序應(yīng)是( 。
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校九年級學生舉行朗誦比賽,全年級學生都參加,學校對表現(xiàn)優(yōu)異的學生進行表彰,設(shè)置一、二、三等獎各進步獎共四個獎項,賽后將九年級(1)班的獲獎情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:
(1)九年級(1)班共有 名學生;
(2)將條形圖補充完整:在扇形統(tǒng)計圖中,“二等獎”對應(yīng)的扇形的圓心角度數(shù)是 ;
(3)如果該九年級共有1250名學生,請估計榮獲一、二、三等獎的學生共有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為12 ,點B在點A右邊,且OA2OB.
(1)寫出數(shù)軸上點 B 表示的數(shù);
(2)點 M 為數(shù)軸上一點,若 AM BM 4 ,求出點 M 表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知F是平行四邊形ABCD的邊DC中點,若三角形EFC,ABE,AFD的面積分別為3平方厘米,4平方厘米,5平方厘米,平行四邊形ABCD的面積是整數(shù)。則三角形AEF的面積為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,將一張矩形紙片 ABCD 沿著對角線 BD 向上折疊,頂點 C 落到點 E 處,BE 交 AD 于點 F.
(1)求證:△BDF 是等腰三角形;
(2)如圖 2,過點 D 作 DG∥BE,交 BC 于點 G,連接 FG 交 BD 于點 O.
①判斷四邊形 BFDG 的形狀,并說明理由;
②若 AB=6,AD=8,則 FG 的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com