【題目】如圖①為RtAOBAOB=90°,其中OA=3,OB=4.將AOB沿x軸依次以A,B,O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn).分別得圖②,圖③,,則旋轉(zhuǎn)到圖⑩時直角頂點的坐標是_____

【答案】(36,0).

【解析】∵∠AOB=90,OA=3,OB=4,

AB===5,

根據(jù)圖形,每3個圖形為一個循環(huán)組,3+5+4=12,

所以,圖⑨的直角頂點在x軸上,橫坐標為12×3=36,

所以,圖⑨的頂點坐標為(36,0),

又∵圖⑩的直角頂點與圖⑨的直角頂點重合,

∴圖⑩的直角頂點的坐標為(36,0).

故答案為:(36,0).

點睛: 本題考查了坐標與圖形的變化旋轉(zhuǎn),仔細觀圖形,判斷出旋轉(zhuǎn)規(guī)律3個圖形為一個循環(huán)組依次循環(huán),且下一組的第一個圖形與上一組的最后一個圖形的直角頂點重合是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OF是∠MON的平分線,點A在射線OM上,PQ是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接ABPB

1)如圖1,當PQ兩點都在射線ON上時,請直接寫出線段ABPB的數(shù)量關(guān)系;

2)如圖2,當P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;

3)如圖3MON=60°,連接AP,設(shè)=k,當PQ兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明AOB≌△PQB即可解決問題;

2)存在.證明方法類似(1);

3)連接BQ.只要證明ABP∽△OBQ,即可推出=,由AOB=30°,推出當BAOM時, 的值最小,最小值為0.5,由此即可解決問題;

試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ

BC垂直平分OQ,BO=BQ,∴∠BOQ=∠BQO,OF平分MON,∴∠AOB=∠BQO,OA=PQ,∴△AOB≌△PQB,AB=PB

2)存在,理由:如圖2中,連接BQ

BC垂直平分OQ,BO=BQ,∴∠BOQ=∠BQO,OF平分MON,BOQ=∠FON∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,OA=PQ,∴△AOB≌△PQBAB=PB

3)連接BQ

易證ABO≌△PBQ,∴∠OAB=BPQ,AB=PB,∵∠OPB+BPQ=180°,∴∠OAB+OPB=180°,AOP+ABP=180°,∵∠MON=60°,∴∠ABP=120°,BA=BP,∴∠BAP=BPA=30°,BO=BQ,∴∠BOQ=BQO=30°∴△ABP∽△OBQ, =∵∠AOB=30°,BAOM時, 的值最小,最小值為0.5,k=0.5

點睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.

型】解答
結(jié)束】
28

【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點P作PEx軸,垂足為E,交直線l于點F.

(1)試求該拋物線表達式;

(2)如圖(1),若點P在第三象限,四邊形PCOF是平行四邊形,求P點的坐標;

(3)如圖(2),過點P作PHy軸,垂足為H,連接AC.

求證:ACD是直角三角形;

試問當P點橫坐標為何值時,使得以點P、C、H為頂點的三角形與ACD相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】考古學家發(fā)現(xiàn)了一塊古代圓形陶器殘片如圖所示,為了修復(fù)這塊陶器殘片,需要找出圓心.

1)請利用尺規(guī)作圖確定這塊殘片的圓心O;(保留作圖痕跡,不寫作法)

2)寫出作圖的主要依據(jù):_______________________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程組解應(yīng)用題:

在首屆“一帶一路”國際合作高峰論壇舉辦之后,某工廠準備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知3件甲種商品與5件乙種商品的銷售收入相同,2件甲種商品比3件乙種商品的銷售收入多200. 問甲、乙兩種商品的銷售單價分別是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:中,,求證:,下面寫出可運用反證法證明這個命題的四個步驟:

①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個步驟正確的順序應(yīng)是( 。

A.③④②①B.③④①②C.①②③④D.④③①②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校九年級學生舉行朗誦比賽,全年級學生都參加,學校對表現(xiàn)優(yōu)異的學生進行表彰,設(shè)置一、二、三等獎各進步獎共四個獎項,賽后將九年級(1)班的獲獎情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:

(1)九年級(1)班共有 名學生;

(2)將條形圖補充完整:在扇形統(tǒng)計圖中,“二等獎”對應(yīng)的扇形的圓心角度數(shù)是 ;

(3)如果該九年級共有1250名學生,請估計榮獲一、二、三等獎的學生共有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為12 ,點B在點A右邊,且OA2OB

1)寫出數(shù)軸上點 B 表示的數(shù);

2)點 M 為數(shù)軸上一點,若 AM BM 4 ,求出點 M 表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知F是平行四邊形ABCD的邊DC中點,若三角形EFC,ABE,AFD的面積分別為3平方厘米,4平方厘米,5平方厘米,平行四邊形ABCD的面積是整數(shù)。則三角形AEF的面積為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,將一張矩形紙片 ABCD 沿著對角線 BD 向上折疊,頂點 C 落到點 E 處,BE 交 AD 于點 F.

(1)求證:△BDF 是等腰三角形;

(2)如圖 2,過點 D 作 DG∥BE,交 BC 于點 G,連接 FG 交 BD 于點 O.

①判斷四邊形 BFDG 的形狀,并說明理由;

②若 AB=6,AD=8,則 FG 的長為_____.

查看答案和解析>>

同步練習冊答案