【題目】將一張長方形的紙對折,如圖所示可得到一條折痕(圖中虛線).繼續(xù)對折,對折時每次折痕與上次的折痕保持平行,連續(xù)對折三次后,可以得到條折痕,那么對折四次可以得到( )條折痕.如果對折次, 可以得到( )條折痕
A.,B.,C.,D.,
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經(jīng)過A,C兩點.
(1)求拋物線的解析式;
(2)在AC上方的拋物線上有一動點P.
①如圖1,當點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標;
②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應黨中央“下好一盤棋,共護一江水”的號召,某治污公司決定購買甲、乙兩種型號的污水處理設備共10臺.經(jīng)調查發(fā)現(xiàn):購買一臺甲型設備比購買一臺乙型設備多2萬元,購買2臺甲型設備比購買3臺乙型設備少6萬元,且一臺甲型設備每月可處理污水240噸,一臺乙型設備每月可處理污水200噸.
(1)請你計算每臺甲型設備和每臺乙型設備的價格各是多少萬元?
(2)若治污公司購買污水處理設備的資金不超過109萬元,月處理污水量不低于2080噸.
①求該治污公司有幾種購買方案;
②如果為了節(jié)約資金,請為該公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=50°,AE是∠BAC的平分線,AD是高.
(1)求∠BAE的度數(shù);
(2)求∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,頂點為(4,1)的拋物線交y軸于點A,交x軸于B,C兩點(點B在點C的左側),已知C點坐標為(6,0).
(1)求此拋物線的解析式;
(2)連結AB,過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與拋物線的對稱軸l相切,先補全圖形,再判斷直線BD與⊙C的位置關系并加以證明;
(3)已知點P是拋物線上的一個動點,且位于A,C兩點之間.問:當點P運動到什么位置時,△PAC的面積最大?求出△PAC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若點E、B、D到直線AC的距離分別為6、3、2,則圖中實線所圍成的陰影部分面積S是( )
A.50B.44C.38D.32
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點D為AB的中點.
⑴如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CPQ是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為______cm/s時,在某一時刻也能夠使△BPD與△CPQ全等.
⑵若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都按逆時針方向沿△ABC的三邊運動.求經(jīng)過多少秒后,點P與點Q第一次相遇,并寫出第一次相遇點在△ABC的哪條邊上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點 A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線 OA 向下平移后得到直線 l,與反比例函數(shù)的圖象交于點 B(6,m),求 m 的值和直線 l 的解 析式;
(3)在(2)中的直線 l 與 x 軸、y 軸分別交于 C、D,求四邊形 OABC 的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com