在平面直角坐標(biāo)系xoy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,
給出如下定義:
若∣x1-x2∣≥∣y1-y2∣,則點P1與點P2的“非常距離”為∣x1-x2∣;
若∣x1-x2∣<∣y1-y2∣,則點P1與點P2的“非常距離”為∣y1-y2∣.
例如:點P1(1,2),點P2(3,5),因為∣1-3∣<∣2-5∣,所以點P1與點P2的“非常距離”為
∣2-5∣=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x
軸的直線P2Q的交點)。
(1)已知點,B為y軸上的一個動點,
①若點A與點B的“非常距離”為2,寫出一個滿足條件的點B的坐標(biāo);
②直接寫出點A與點B的“非常距離”的最小值;
(2)已知C是直線上的一個動點,
①如圖2,點D的坐標(biāo)是(0,1),求點C與點D的“非常距離”的最小值及相應(yīng)的點C的坐標(biāo);
②如圖3,E是以原點O為圓心,1為半徑的圓上的一個動點,求點C與點E的“非常距離”的最
小值及相應(yīng)的點E和點C的坐標(biāo)。
 

解:(1)①(0,-2)或(0,2)。
。
(2)①設(shè)C坐標(biāo)為,如圖,過點C作CP⊥x軸于點P,作CQ⊥y軸于點Q。

由“非常距離”的定義知,當(dāng)OP=DQ時,點C與點D的“非常距離”最小,
。
兩邊平方并整理,得,解得,(大于,舍去)。
∴點C與點D的“非常距離”的最小值距離為,此時
②設(shè)直線與x軸和y軸交于點A,B,過點O作直線的垂線交直線于點C,交圓于點E,過點C作CP⊥x軸于點P,作CQ⊥y軸于點Q,過點E作EM⊥x軸于點M,作EN⊥y軸于點N。
易得,OA=4,OB=3,AB=5。

由△OAB∽△MEM,OE=1,得OM=,ON=!。
設(shè)C坐標(biāo)為
由“非常距離”的定義知,當(dāng)MP=NQ時,點C與點E的“非常距離”最小,
。
兩邊平方并整理,得,
解得,(大于,舍去)。
∴點C與點E的“非常距離”的最小值距離為1,此時,。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標(biāo);
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運(yùn)動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊答案