【題目】 如圖,某消防隊在一居民樓前進行演習(xí),消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者,在消防車上點A處測得點B和點C的仰角分別為45°和65°,點A距地面2.3米,點B距地面10.8米,為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?結(jié)果保留整數(shù),參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
【答案】14
【解析】
作AH⊥EF于H,作AD⊥BN于D,則易得四邊形AHND為矩形,所以DN=AH=2.3,則BD=8.5,利用∠BAD=45°得到AD=BD=8.5,在Rt△ABD中利用正切值求出CD的長,然后計算CD-BD即可.
作AH⊥EF于H,作AD⊥BN于D,如圖,
AH=2.3,∠BAD=45°,∠CAD=65°,BN=10.8,易得四邊形AHND為矩形,
∴DN=AH=2.3,
∴BD=BN﹣DN=10.8﹣2.3=8.5,
在Rt△ABD中,∵∠BAD=45°,
∴AD=BD=8.5,
在Rt△ABD中,∵tan∠CAD=,
∴CD=10.8tan65°=10.8×2.1=22.68,
∴CB=CD﹣BD=22.68﹣8.5=14.18≈14
答:云梯需要繼續(xù)上升的高度BC約為14米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對角線BD上,折痕為BE,點C落在點C′處,若∠ADB=46°,則∠DBE的度數(shù)為 °.
(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9.
(畫一畫)
如圖2,點E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點M,N分別在邊AD,BC上),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段描清楚);
(算一算)
如圖3,點F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點A,B分別落在點A′,B′處,若AG=,求B′D的長;
(驗一驗)
如圖4,點K在這張矩形紙片的邊AD上,DK=3,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點A,B分別落在點A′,B′處,小明認為B′I所在直線恰好經(jīng)過點D,他的判斷是否正確,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“熱愛勞動,勤儉節(jié)約”是中華民族的光榮傳統(tǒng),某小學(xué)校為了解本校3至6年級的3000名學(xué)生幫助父母做家務(wù)的情況,以便做好引導(dǎo)和教育工作,隨機抽取了200名學(xué)生進行調(diào)查,按年級人數(shù)和做家務(wù)程度,分別繪制了條形統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2).
(1)四個年級被調(diào)查人數(shù)的中位數(shù)是多少?
(2)如果把“天天做”、“經(jīng)常做”、“偶爾做”都統(tǒng)計成幫助父母做家務(wù),那么該校3至6年級學(xué)生幫助父母做家務(wù)的人數(shù)大約是多少?
(3)在這次調(diào)查中,六年級共有甲、乙、丙、丁四人“天天幫助父母做家務(wù)”,現(xiàn)準(zhǔn)備從四人中隨機抽取兩人進行座談,請用列表法或畫樹狀圖的方法求出抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標(biāo)是(2,0),B點坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點坐標(biāo)及D點的坐標(biāo);
(3)二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最小?若C點存在,求出C點的坐標(biāo);若C點不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.
(1)求足球開始飛出到第一次落地時,該拋物線的表達式.
(2)足球第一次落地點距守門員多少米?(取)
(3)運動員乙要搶到第二個落點,他應(yīng)再向前跑多少米?
(取)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖15,直線y=x+b與雙曲線y=都經(jīng)過點A(2,3),直線y=x+b與x軸、y軸分別交于B、C兩點.
(1)求直線和雙曲線的函數(shù)關(guān)系式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點、點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com