如圖,在東西方向的海岸線l上有一長(zhǎng)為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時(shí)刻測(cè)得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距千米的A處;經(jīng)過40分鐘,又測(cè)得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請(qǐng)說明理由.(參考數(shù)據(jù):

【答案】分析:(1))過點(diǎn)A作AC⊥OB于點(diǎn)C.可知△ABC為直角三角形.根據(jù)勾股定理解答.
(2)延長(zhǎng)AB交l于D,比較OD與AM、AN的大小即可得出結(jié)論.
解答:解(1)過點(diǎn)A作AC⊥OB于點(diǎn)C.由題意,得
OA=千米,OB=20千米,∠AOC=30°.
(千米).(1分)
∵在Rt△AOC中,OC=OA•cos∠AOC==30(千米).
∴BC=OC-OB=30-20=10(千米).…(3分)
∴在Rt△ABC中,==20(千米).(5分)
∴輪船航行的速度為:(千米/時(shí)).…(6分)
(2)如果該輪船不改變航向繼續(xù)航行,不能行至碼頭MN靠岸.    …(7分)
理由:延長(zhǎng)AB交l于點(diǎn)D.
∵AB=OB=20(千米),∠AOC=30°.
∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.
∴在Rt△BOD中,OD=OB•tan∠OBD=20×tan60°=(千米).…(9分)
>30+1,
∴該輪船不改變航向繼續(xù)航行,不能行至碼頭MN靠岸.     …(10分)
點(diǎn)評(píng):本題考查了解直角三角形的應(yīng)用,此題結(jié)合方向角,考查了閱讀理解能力、解直角三角形的能力.計(jì)算出相關(guān)特殊角和作出輔助線構(gòu)造相似三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,李明同學(xué)在東西方向的濱海路A處,測(cè)得海中燈塔P在北偏東60°方向上,他向東走400米至B處,測(cè)得燈塔P在北偏東30°方向上,求燈塔P到濱海路的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,小明同學(xué)在東西方向的環(huán)海路A處,測(cè)得海中燈塔P在北偏東60°方向上,在A處東500米的B處,測(cè)得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC=
 
米.(用根號(hào)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,小明同學(xué)在東西方向的環(huán)海路A處,測(cè)得海中燈塔P在北偏東60°方向上,在A處東500米的B處,測(cè)得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC=( 。┟祝
A、250
B、500
C、250
3
D、500
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,小明同學(xué)在東西方向的環(huán)海路A處,測(cè)得海中燈塔P在北偏東60°方向上,在A處正東500米的B處,測(cè)得海中燈塔P在北偏東30°方向上,則燈塔P到環(huán)海路的距離PC等于多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,小明同學(xué)在東西方向的環(huán)海路A處,測(cè)得海中燈塔P在北偏東60°方向上,在A處正東500米的B處,測(cè)得海中燈塔P在北偏東30°方向上,求燈塔P到環(huán)海路的距離.

  

 

查看答案和解析>>

同步練習(xí)冊(cè)答案