如圖,在直角坐標(biāo)系中,以x軸上一點(diǎn)P(1,0)為圓心的圓與x軸、y軸分別交于A、B、C、D四點(diǎn),點(diǎn)C的坐標(biāo)為(0,
3
).
(1)直接寫(xiě)出A、B、D三點(diǎn)坐標(biāo);
(2)若拋物線y=x2+bx+c過(guò)A、D兩點(diǎn),求這條拋物線的解析式,并判斷點(diǎn)B是否在所求的拋物線上,說(shuō)明理由.
(1)連接AC、BC,則∠ACB=90°;
∵AB是⊙O的直徑,且AB⊥CD,
∴OC=OD;
易知OC=
3
,則OD=OC=
3
,即D(0,-
3
);
Rt△ABC中,OC⊥AB,由射影定理,得:
OA•OB=OC2=3,
設(shè)⊙O的半徑為R,則OA=R-1,OB=R+1,代入上式,得:
(R+1)(R-1)=3,解得R=2;
∴OA=1,OB=3,即A(-1,0),B(3,0);
所以A、B、D的坐標(biāo)分別為:A(-1,0),B(3,0),D(0,-
3
).

(2)將A(-1,0),D(0,-
3
)代入y=x2+bx+c中,得:
c=-
3
1-b+c=0
,解得
b=1-
3
c=-
3
;
∴y=x2+(1-
3
)x-
3

當(dāng)x=3時(shí),x2+(1-
3
)x-
3
=9+(1-
3
)×3-
3
=12-4
3
≠0;
∴點(diǎn)B(3,0)不在拋物線y=x2+(1-
3
)x-
3
上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+3經(jīng)過(guò)A(-3,0),B(-1,0)兩點(diǎn)如圖1,頂點(diǎn)為M.
(1)求a、b的值;
(2)設(shè)拋物線與y軸的交點(diǎn)為Q,且直線y=-2x+9與直線OM交于點(diǎn)D(如圖1).現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上,當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時(shí),Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)M、Q間所夾的曲線
MQ
掃過(guò)的區(qū)域的面積;
(3)將拋物線平移,當(dāng)頂點(diǎn)M移至原點(diǎn)時(shí),過(guò)點(diǎn)Q(0,3)作不平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn)(如圖2).試探究:在y軸的負(fù)半軸上是否存在點(diǎn)P,使得∠EPQ=∠QPF?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一次函數(shù)y=x+2的圖象分別交軸、軸于A、B兩點(diǎn),O1為以O(shè)B為邊長(zhǎng)的正方形OBCD的對(duì)角線的交點(diǎn).兩動(dòng)點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā)在四邊形ABCD上運(yùn)動(dòng),其中動(dòng)點(diǎn)P以每秒
2
個(gè)單位長(zhǎng)度的速度沿A→B→A運(yùn)動(dòng)后停止,動(dòng)點(diǎn)Q以每秒2個(gè)單位長(zhǎng)度的速度沿A→O→D→C→B運(yùn)動(dòng).AO1交于軸于點(diǎn)E,設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)求出E點(diǎn)的坐標(biāo)和S△ABE的值;
(3)當(dāng)Q點(diǎn)運(yùn)動(dòng)在折線AD→DC上時(shí),是否存在某一時(shí)刻t(秒),使得S△ABE:S△APQ=4:3?若存在,請(qǐng)確定t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx-3(a,b是常數(shù))的圖象與x軸交于點(diǎn)A(-3,0)和點(diǎn)B(1,0),與y軸交于點(diǎn)C.動(dòng)直線y=t(t為常數(shù))與拋物線交于不同的兩點(diǎn)P、Q.
(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知拋物線y=-
5
4
x2+bx+c經(jīng)過(guò)點(diǎn)A(0,1)、B(3,
5
2
)兩點(diǎn),BC⊥x軸,垂足為C.點(diǎn)P是線段AB上的一動(dòng)點(diǎn)(不與A,B重合),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)連結(jié)AM、BM,設(shè)△AMB的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最大值;
(3)連結(jié)PC,當(dāng)t為何值時(shí),四邊形PMBC是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將進(jìn)貨單價(jià)為40元的商品按50元售出時(shí),就能賣出500個(gè),已知這個(gè)商品每個(gè)漲價(jià)1元,其銷售量就減少10個(gè).
(1)問(wèn):為了賺得8000元的利潤(rùn),售價(jià)應(yīng)定為多少?這時(shí)進(jìn)貨多少個(gè)?
(2)當(dāng)定價(jià)為多少元時(shí),可獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一男生推鉛球,鉛球在運(yùn)動(dòng)過(guò)程中,高度不斷發(fā)生變化.已知當(dāng)鉛球飛出的水平距離為x時(shí),其高度為(-
1
12
x2+
2
3
x+
5
3
)
米,則這位同學(xué)推鉛球的成績(jī)?yōu)椋ā 。?table style="margin-left:0px;width:650px;">A.9米B.10米C.11米D.12米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某校數(shù)學(xué)研究性學(xué)習(xí)小組準(zhǔn)備設(shè)計(jì)一種高為60cm的簡(jiǎn)易廢紙箱.如圖甲,廢紙箱的一面利用墻,放置在地面上,利用地面作底,其它的面用一張邊長(zhǎng)為60cm的正方形硬紙板圍成.經(jīng)研究發(fā)現(xiàn):由于廢紙箱的高是確定的,所以廢紙箱的橫截面圖形面積越大,則它的容積越大.該小組通過(guò)多次嘗試,最終選定乙圖中的簡(jiǎn)便且易操作的三種橫截面圖形.在三個(gè)圖的比較中,圖______橫截面圖形的面積最大(填序號(hào)①②③),則圍成最大的體積是______cm3.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某小區(qū)要修建一塊矩形綠地,設(shè)矩形的長(zhǎng)為x米,寬為y米,且x>y.
(1)如果用18米的建筑材料來(lái)修建綠地的邊框(即周長(zhǎng)),求y與x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)現(xiàn)根據(jù)小區(qū)的規(guī)劃要求,所修建的矩形綠地面積必須是18平方米,在滿足(1)的條件下,問(wèn)矩形的長(zhǎng)和寬各為多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案