【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B,C,E在同一條直線上,連結DC.

(1)求證:ABE≌△ACD;

(2)求證:DCBE.

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:(1)根據(jù)等腰直角三角形的性質,可以得出ABE≌△ACD

(2)由ABE≌△ACD可以得出B=∠ACD﹣45°,進而得出DCB=90°,就可以得出結論.

證明:(1)∵△ABCAED均為等腰直角三角形,

AB=AC,AE=AD,BAC=EAD=90°.ABC=ACB=45°,

∴∠BAC+CAE=EAD+CAE.

即∠BAE=CAD,

ABEACD中,

∴△ABE≌△ACD(SAS),

(2)證明:∵△ABE≌△ACD,

∴∠ACD=ABE=45°,

又∵∠ACB=45°,

∴∠BCD=ACB+ACD=90°,

DCBE.

點睛:此題主要考查了等腰直角三角形的性質以及全等三角形的性質與判定,根據(jù)等腰三角形的性質得出AC=ABAD=AE,利用SAS證全等是解題關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D、FE、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)

解:∵EF∥AD,(已知)

∴∠2=      

∵∠1=∠2,(已知)

∴∠1=   (等量代換)

      ,(   

∴∠AGD+   =180°,(兩直線平行,同旁內角互補)

∵∠CAB=70° ,(已知)

∴∠AGD=   (等式性質)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰RtABC,CAB=90°,AB=AC.

(1)求C點坐標;

(2)如圖過C點作CDX軸于D,連接AD,求ADC的度數(shù);

(3)如圖在(1)中,點A在Y軸上運動,以OA為直角邊作等腰RtOAE,連接EC,交Y軸于F,試問A點在運動過程中SAOB:SAEF的值是否會發(fā)生變化?如果沒有變化,請直接寫出它們的比值   (不需要解答過程或說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習了全等三角形和等邊三角形的知識后,張老師出了如下一道題:如圖,點B是線段AC上任意一點,分別以ABBC為邊在AC同一側作等邊ABD和等邊BCE,連接CDAE分別與BEDB交于點N、M,連接MN.求證:ABE≌△DBC

接著張老師又讓學生分小組進行探究:你還能得出什么結論?

精英小組探究的結論是:AM=DN

奮斗小組探究的結論是:EMB≌△CNB

創(chuàng)新小組探究的結論是:MNAC

1)你認為哪一小組探究的結論是正確的?

2)選擇其中你認為正確的一種情形加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtΔABC中,∠C=90,AC=4cm,BC=3cm.動點M、N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A、B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動。連接PM、PN。設移動時間為t(單位:秒,0<t<2.5).

(1)當t為何值時,以A、P、M為頂點的三角形與ΔABC相似?

(2)是否存在某一時刻t,使PMN 的面積恰好是ABC 面積的;若存在求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場用24000元購入一批空調,然后以每臺3000元的價格銷售,因天氣炎熱,空調很快售完;商場又以52000元的價格再次購入該種型號的空調,數(shù)量是第一次購入的2,但購入的單價上調了200,售價每臺也上調了200

1商場第一次購入的空調每臺進價是多少元?

2商場既要盡快售完第二次購入的空調,又要在這兩次空調銷售中獲得的利潤率不低于22%打算將第二次購入的部分空調按每臺九五折出售,最多可將多少臺空調打折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD平分∠BAC,

(1)圖①中,已知AF⊥BC , ∠B=500∠C=600. 求∠DAF的度數(shù).

2)圖②中,請你在直線AD上任意取一點E(不與點A、D重合),畫EF⊥BC,垂足為F.已知∠B=α,∠C=ββa.求∠DEF的度數(shù). (用α、β的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.

(1)請寫出圖中所有∠EOC的補角 ____________________;

(2)如果∠POC:∠EOC=2:5.求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角ABC中,∠C=90°,點D,E分別是邊AC,BC上的點,點P是一動點.令∠PDA=1,PEB=2,DPE=α.

(1)若點P在線段AB上,如圖①,且∠α=50°,則∠1+2=      ;

(2)若點P在斜邊AB上運動,如圖②,則∠α、1、2之間的關系為      ;

(3)如圖③,若點P在斜邊BA的延長線上運動(CE<CD),請直接寫出∠α、1、2之間的關系:      ;

(4)若點P運動到ABC形外(只需研究圖④情形),則∠α、1、2之間有何關系?并說明理由.

查看答案和解析>>

同步練習冊答案