【題目】如圖,在平面直角坐標系中,直線l是第一、三象限的角平分線.
實驗與探究:
(1)由圖觀察易知A(0,2)關(guān)于直線l的對稱點A′的坐標為(2,0),請在圖中分別標明B(5,3)、C(﹣2,5)關(guān)于直線l的對稱點B′、C′的位置,并寫出他們的坐標:B′ 、C′ ;
歸納與發(fā)現(xiàn):
(2)結(jié)合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內(nèi)任一點P(a,b)關(guān)于第一、三象限的角平分線l的對稱點P′的坐標為 ;
運用與拓廣:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】最短路徑問題:
例:如圖所示,要在街道旁修建一個奶站,向居民區(qū)A、B提供牛奶,奶站應(yīng)建在什么地方,才能使從A、B到它的距離之和最短.
解:只有A、C、B在一直線上時,才能使AC+BC最小.作點A關(guān)于直線“街道”的對稱點A′,然后連接A′B,交“街道”于點C,則點C就是所求的點.
應(yīng)用:已知:如圖A是銳角∠MON內(nèi)部任意一點,
在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.
(1)借助直角三角板在下圖中找出符合條件的點B和C.
(2)若∠MON=30°,OA=10,求三角形的最小周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設(shè)運動時間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長度;
(2)若點P、Q的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列動車從西安開往西寧,一列普通列車從西寧開往西安,兩車同時出發(fā),設(shè)普通列車行駛的時間為(小時),兩車之間的距離為(千米),如圖中的折線表示與之間的函數(shù)關(guān)系.
根據(jù)圖象進行以下探究:
(1)西寧到西安兩地相距_________千米,兩車出發(fā)后___________小時相遇;
普通列車到達終點共需__________小時,普通列車的速度是___________千米/小時.
(2)求動車的速度;
(3)普通列車行駛小時后,動車的達終點西寧,求此時普通列車還需行駛多少千米到達西安?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)
(2)﹣ + + ﹣
(3)(﹣ )×(﹣25)×(﹣1 )×4
(4)(﹣1+ ﹣ + )÷(﹣ )
(5)(﹣ )×(﹣ )+(﹣ )×(+ )
(6)﹣14﹣(1﹣0.5)× ×[2﹣(﹣3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題背景】
(1)如圖1的圖形我們把它稱為“8字形”,請說明∠A+∠B=∠C+∠D;
【簡單應(yīng)用】
(2)如圖2,AP、CP分別平分∠BAD.∠BCD,若∠ABC=36°,∠ADC=16°,
求∠P的度數(shù);
【問題探究】
(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想∠P的度數(shù),并說明理由.
【拓展延伸】
(4)在圖4中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為: ______ (用α、β表示∠P,不必證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com