【題目】如圖,在Rt△ABC中,∠BAC=90°,CD平分∠ACB,交AB于點(diǎn)D,以點(diǎn)D為圓心,DA為半徑的圓與AB相交于點(diǎn)E,與CD交于點(diǎn)F.
(1)求證:BC是⊙D的切線;
(2)若EF∥BC,且BC=6,求圖中陰影部分的面積.
【答案】(1)見解析;(2)-
【解析】
(1)過D作DG⊥BC于G,根據(jù)角平分線的性質(zhì)得到DG=DA,根據(jù)切線的判定定理即可得到結(jié)論;
(2)連接EF,由已知和(1)的結(jié)論可得DG⊥EF,根據(jù)垂徑定理、圓心角、弧之間的關(guān)系及等量代換可得∠CDG=∠ADC=∠BDG=60°,再求出DG、CG的長(zhǎng),根據(jù)陰影部分的面積=△DGC的面積-扇形DGF的面積即可求解.
(1)過D作DG⊥BC于G,
∵DA⊥AC,∠ACD=∠BCD,
∴DG=DA,
∴BC是⊙D的切線.
(2)連接EF,
∵EF∥BC,由(1)DG⊥BC,
∴DG⊥EF,
∴,
∴∠EDG=∠CDG.
由(1)∠ACD=∠BCD,∠ACD+∠ADC=∠BCD+∠CDG=90°,
∴∠CDG=∠ADC,
∴∠CDG=∠ADC=∠BDG=60°.
∵EF∥BC,
∴∠DEF=∠B, ∠DFE=∠DCB,
在⊙D中,DE=DF,
∴∠DFE=∠DEF.
∴∠B=∠DCB,
∴DB=DC.
∵DG⊥BC,
∴CG=BC=3.
在Rt△DCG中,DG==.
∴S陰影=×3×-π()2=-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,點(diǎn)是的中點(diǎn),連接并延長(zhǎng),交的延長(zhǎng)線于點(diǎn).
(1)求證:.
(2)連接,,當(dāng)______時(shí),四邊形是正方形.請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對(duì)稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線y=x﹣1交于A、B兩點(diǎn),直線AB與拋物線的對(duì)稱軸交于點(diǎn)E.
(1)求拋物線的解板式.
(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動(dòng),若△ABP的面積最大,求此時(shí)點(diǎn)P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點(diǎn)B、E、C、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出符合條件點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)y=(x>0,k>0圖象上的兩點(diǎn)(n,3n)、(n+1,2n).
(1)求n的值;
(2)如圖,直線l為正比例函數(shù)y=x的圖象,點(diǎn)A在反比例函數(shù)y=(x>0,k>0)的圖象上,過點(diǎn)A作AB⊥l于點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,過點(diǎn)A作AD⊥BC于點(diǎn)D,記△BOC的面積為S1,△ABD的面積為S2,求S1﹣S2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,弦AB,CD所對(duì)的圓心角分別是∠AOB,∠COD,下列說法正確的是( )①若∠AOB=∠COD,則CD=AB;②若CD=AB,則CD,AB所對(duì)的弧相等;③若CD=AB,則點(diǎn)O到CD,AB的距離相等;④若∠AOB+∠COD=180°,且CD=6,則AB=8.
A.①②③④B.①③④C.①②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)在x正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,圓心為P(x,y)的動(dòng)圓經(jīng)過點(diǎn)A(1,2)且與x軸相切于點(diǎn)B.
(1)當(dāng)x=2時(shí),求⊙P的半徑;
(2)求y關(guān)于x的函數(shù)解析式;判斷此函數(shù)圖象的形狀;并在圖②中畫出此函數(shù)的圖象;
(3)當(dāng)⊙P的半徑為1時(shí),若⊙P與以上(2)中所得函數(shù)圖象相交于點(diǎn)C、D,其中交點(diǎn)D(m,n)在點(diǎn)C的右側(cè),請(qǐng)利用圖②,求cos∠APD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE
(Ⅰ)求證:AE是⊙O的切線;
(Ⅱ)若∠DBC=30°,DE=1 cm,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABCD的邊AB在x軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)C在第一象限,將△AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DE與BC交于點(diǎn)F.若y(k≠0)圖象經(jīng)過點(diǎn)C,且S△BEF=1,則k的值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com