【題目】如圖,點(diǎn)C為△ABD外接圓上的一動(dòng)點(diǎn)(點(diǎn)C不在上,且不與點(diǎn)B,D重合),∠ACB=∠ABD=45°.
(1)求證:BD是該外接圓的直徑;
(2)連結(jié)CD,求證:AC=BC+CD;
(3)若△ABC關(guān)于直線AB的對(duì)稱圖形為△ABM,連接DM,試探究,三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
【答案】(1)詳見解析;(2)詳見解析;(3)DM2=BM2+2MA2,理由詳見解析.
【解析】
試題分析:(1)易證△ABD為等腰直角三角形,即可判定BD是該外接圓的直徑;(2)如圖所示作CA⊥AE,延長(zhǎng)CB交AE于點(diǎn)E,再證△ACE為等腰直角三角形,可得AC=AE,再由勾股定理即可得;利用SAS判定△ABE≌△ADC,可得BE=DC,所以CE=BE+B,所以C=DC+BC=;(3)延長(zhǎng)MB交圓于點(diǎn)E,連結(jié)AE、DE,因∠BEA=∠ACB=∠BMA=45°,在△MAE中有MA=AE,∠MAE=90°,由勾股定理可得,再證∠BED=90°,在RT△MED中,有,所以.
試題解析:(1)∵弧AB=弧AB, ∴∠ADB=∠ACB
又∵∠ACB=∠ABD=45° ∴∠ABD=∠ADB=45°
∴∠BAD=90° ∴△ABD為等腰直角三角形
∴BD是該外接圓的直徑
(2)如圖所示作CA⊥AE,延長(zhǎng)CB交AE于點(diǎn)E
∵∠ACB=45°,CA⊥AE
∴△ACE為等腰直角三角形 ∴AC=AE
由勾股定理可知CE2=AC2+AE2=2AC2 ∴
由(1)可知△ABD 為等腰直角三角形
∴AB=AD ∠BAD=90° 又∵∠EAC=90°
∴∠EAB+∠BAC=∠DAC+∠BAC ∴∠EAB=∠DAC
∴在△ABE和△ADC中
∴△ABE≌△ADC(SAS)
∴BE=DC
∴CE=BE+BC=DC+BC=
(3)DM2=BM2+2MA2
延長(zhǎng)MB交圓于點(diǎn)E,連結(jié)AE、DE
∵∠BEA=∠ACB=∠BMA=45°
∴在△MAE中有MA=AE,∠MAE=90°
∴
又∵AC=MA=AE
∴=
又∵=
∴-+=-+
即=
∴DE=BC=MB
∵BD為直徑
∴∠BED=90°
在RT△MED中,有
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】武漢市某中學(xué)進(jìn)行九年級(jí)理化實(shí)驗(yàn)考查,有A和B兩個(gè)考查實(shí)驗(yàn),規(guī)定每位學(xué)生只參加一個(gè)實(shí)驗(yàn)的考查,并由學(xué)生自己抽簽決定具體的考查實(shí)驗(yàn),小孟、小柯、小劉都要參加本次考查.
(1)用列表或畫樹狀圖的方法求小孟、小柯都參加實(shí)驗(yàn)A考查的概率;
(2)他們?nèi)酥兄辽儆袃扇藚⒓訉?shí)驗(yàn)B的概率 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線,記為拋物線,它與軸交于點(diǎn);將拋物線繞點(diǎn)旋轉(zhuǎn)得拋物線,交軸于點(diǎn);將拋物線繞點(diǎn)旋轉(zhuǎn)得拋物線,交軸于點(diǎn).···如此進(jìn)行下去,得到一條“波浪線”,若點(diǎn)在此“波浪線”上,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了豐富學(xué)生課余生活,計(jì)劃開設(shè)以下課外活動(dòng)項(xiàng)目:A—版畫,B—機(jī)器人,C—航模,D—園藝種植.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每位學(xué)生必須選且只能選一個(gè)項(xiàng)目),并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有 人;扇形統(tǒng)計(jì)圖中,選“D—園藝種植”的學(xué)生人數(shù)所占圓心角的度數(shù)是 °
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校學(xué)生總數(shù)為1000人,試估計(jì)該校學(xué)生中最喜歡“機(jī)器人”和最喜歡“航模”項(xiàng)目的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+2k-5=0有兩個(gè)實(shí)數(shù)根.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程的一個(gè)實(shí)數(shù)根為4,求k的值和另一個(gè)實(shí)數(shù)根.
(3)若k為正整數(shù),且該方程的根都是整數(shù),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連結(jié)AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:AB=AC;
(2)求證:DE為⊙O的切線;
(3)若⊙O的半徑為5,sinB=,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,將Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ADE,則BC邊掃過(guò)圖形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E在BC邊上,點(diǎn)F在DC的延長(zhǎng)線上,且∠DAE=∠F.
(1)求證:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com