【題目】某校為了了解學(xué)生在家使用電腦的情況(分為“總是、較多、較少、不用”四種情況),隨機(jī)在八、九年級各抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,繪制成部分統(tǒng)計圖如下所示.請根據(jù)圖中信息,回答下列問題:
(1)九年級一共抽查了名學(xué)生,圖中的a= , “總是”對應(yīng)的圓心角為度.
(2)根據(jù)提供的信息,補(bǔ)全條形統(tǒng)計圖.
(3)若該校九年級共有900名學(xué)生,請你統(tǒng)計其中使用電腦情況為“較少”的學(xué)生有多少名?

【答案】
(1)200;144;144
(2)如圖所示;


(3)解: ×100%=20%,900×20%=180(人)

答:使用電腦情況為“較少”的學(xué)生有180名.


【解析】解:(1)九年級一共抽查了80÷40%=200名學(xué)生,圖中的a=144,“總是”對應(yīng)的圓心角為360°×40%=144度;所以答案是:200,144,144
【考點精析】本題主要考查了扇形統(tǒng)計圖和條形統(tǒng)計圖的相關(guān)知識點,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】咸寧市某中學(xué)為了解本校學(xué)生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計圖,“體育”對應(yīng)扇形的圓心角是度;
(2)根據(jù)以上統(tǒng)計分析,估計該校2000名學(xué)生中喜愛“娛樂”的有人;
(3)在此次問卷調(diào)查中,甲、乙兩班分別有2人喜愛新聞節(jié)目,若從這4人中隨機(jī)抽取2人去參加“新聞小記者”培訓(xùn),請用列表法或畫樹狀圖的方法求所抽取的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,點D為AB下方⊙O上一點,點C為弧ABD中點,連接CD,CA.
(1)求證:∠ABD=2∠BDC;
(2)過點C作CH⊥AB于H,交AD于E,求證:EA=EC;
(3)在(2)的條件下,若OH=5,AD=24,求線段DE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了深入貫徹黨的十八大精神,我省某中學(xué)為了深入學(xué)習(xí)社會主義核心價值觀,特對本校部分學(xué)生(隨機(jī)抽樣)進(jìn)行了一次相關(guān)知識的測試(成績分為A,B,C,D,E五個組,x表示測試成績),通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題.
A組:90≤x≤100 B組:80≤x<90 C組:70≤x<80 D組:60≤x<70 E組:x<60

(1)參加調(diào)查測試的學(xué)生共有人;請將兩幅統(tǒng)計圖補(bǔ)充完整.
(2)本次調(diào)查測試成績的中位數(shù)落在組內(nèi).
(3)本次調(diào)查測試成績在80分以上(含80分)為優(yōu)秀,該中學(xué)共有3000人,請估計全校測試成績?yōu)閮?yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點F、C是⊙O上兩點,且 = = ,連接AC、AF,過點C作CD⊥AF,交AF的延長線于點D,垂足為D,若CD=2 ,則⊙O的半徑為(
A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合),以AD為邊在AD的上邊作正方形ADEF,連接CF.
(1)觀察猜想:如圖1,當(dāng)點D在線段BC上時,①BC與CF的位置關(guān)系為:;②BC、CD、CF之間的數(shù)量關(guān)系為:

(2)數(shù)學(xué)思考:如圖2,當(dāng)點D在線段CB的延長線上時,以上①②關(guān)系是否成立,請在后面的橫線上寫出正確的結(jié)論.①BC與CF的位置關(guān)系為:;②BC、CD、CF之間的數(shù)量關(guān)系為:

(3)如圖3,當(dāng)點D在線段BC的延長線上時,延長BA交CF于點G,連接GD,若已知AB=2 ,CD= BC,請求出DG的長(寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點M是AC的中點,以AB為直徑做⊙O分別交AC,BM于點D、E.
(1)求證:∠MDE=∠MED;
(2)填空: ①若AB=6,當(dāng)DM=2AD時,DE=
②連接OD、OE,當(dāng)∠C的度數(shù)為時,四邊形ODME是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平行四邊形ABCD中,∠B=60°,將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點始終與點C重合,角的兩邊所在的兩直線分別交線段AB、AD于點E、F(不包括線段的端點).

(1)問題發(fā)現(xiàn):
如圖1,若平行四邊形ABCD為菱形,
試猜想線段AE、AF、AC之間的數(shù)量關(guān)系 ,請證明你的猜想.

(2)類比探究:
如圖2,若AB:AD=1:2,過點C作CH⊥AD于點H,求AE:FH的比值;
(3)拓展延伸:
如圖3,若AB:AD=1:4,請直接寫出(AE+4AF):AC的比值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于坐標(biāo)平面內(nèi)的點,現(xiàn)將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經(jīng)1次斜平移后的點的坐標(biāo)為(3,5),已知點A的坐標(biāo)為(1,0).

(1)分別寫出點A經(jīng)1次,2次斜平移后得到的點的坐標(biāo).
(2)如圖,點M是直線l上的一點,點A關(guān)于點M的對稱點的點B,點B關(guān)于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經(jīng)n次斜平移后得到,且點C的坐標(biāo)為(7,6),求出點B的坐標(biāo)及n的值.

查看答案和解析>>

同步練習(xí)冊答案