選做題:如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,在C、D之間有一點(diǎn)P,如果P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),問∠PAC,∠APB,∠PBD之間的關(guān)系是否發(fā)生變化.若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
分析:當(dāng)P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),首先過點(diǎn)P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可求得:∠APB=∠PAC+∠PBD.
當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí),由直線l1∥l2,根據(jù)兩直線平行,同位角相等與三角形外角的性質(zhì),即可求得:∠PBD=∠PAC+∠APB.
解答:解:如圖①,當(dāng)P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),∠APB=∠PAC+∠PBD.
理由如下:
過點(diǎn)P作PE∥l1,
∵l1∥l2,
∴PE∥l2∥l1
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;
如圖②,當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l1上方時(shí),∠PBD=∠PAC+∠APB.
理由如下:
∵l1∥l2,
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
如圖③,當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l2下方時(shí),∠PAC=∠PBD+∠APB.
理由如下:
∵l1∥l2,
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
點(diǎn)評(píng):本題主要考查平行線的性質(zhì)與三角形外角的性質(zhì).此題難度適中,解題的關(guān)鍵是掌握:兩直線平行,內(nèi)錯(cuò)角相等與兩直線平行,同位角相等,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年初中畢業(yè)升學(xué)考試(浙江臺(tái)州卷)數(shù)學(xué)(解析版) 題型:填空題

(1)善于思考的小迪發(fā)現(xiàn):半徑為,圓心在原點(diǎn)的圓(如圖1),如果固定直徑,把圓內(nèi)的所有與軸平行的弦都?jí)嚎s到原來的倍,就得到一種新的圖形橢圓(如圖2),她受祖沖之“割圓術(shù)”的啟發(fā),采用“化整為零,積零為整”“化曲為直,以直代曲”的方法.正確地求出了橢圓的面積,她求得的結(jié)果為     

(2)(本小題為選做題,做對(duì)另加3分,但全卷滿分不超過150分)小迪把圖2的橢圓繞軸旋轉(zhuǎn)一周得到一個(gè)“雞蛋型”的橢球.已知半徑為的球的體積為,則此橢球的體積為      

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年初中畢業(yè)升學(xué)考試(浙江臺(tái)州卷)數(shù)學(xué)(帶解析) 題型:填空題

(1)善于思考的小迪發(fā)現(xiàn):半徑為,圓心在原點(diǎn)的圓(如圖1),如果固定直徑,把圓內(nèi)的所有與軸平行的弦都?jí)嚎s到原來的倍,就得到一種新的圖形橢圓(如圖2),她受祖沖之“割圓術(shù)”的啟發(fā),采用“化整為零,積零為整”“化曲為直,以直代曲”的方法.正確地求出了橢圓的面積,她求得的結(jié)果為     

(2)(本小題為選做題,做對(duì)另加3分,但全卷滿分不超過150分)小迪把圖2的橢圓繞軸旋轉(zhuǎn)一周得到一個(gè)“雞蛋型”的橢球.已知半徑為的球的體積為,則此橢球的體積為      

查看答案和解析>>

同步練習(xí)冊(cè)答案