【題目】已知⊙O為△ABC的外接圓,圓心O在AB上.

(1)在圖1中,用尺規(guī)作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);

(2)如圖2,設∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.

①求證:OD⊥BC;

②求EF的長.

【答案】(1)作圖見試題解析;(2)證明見試題解析;

【解析】

試題分析:(1)按照作角平分線的方法作出即可;

(2)①由AD是∠BAC的平分線,得到,再由垂徑定理推論可得到結論;

勾股定理求得CF的長,然后根據(jù)平行線分線段成比例定理求得,即可求得,繼而求得EF的長.

試題解析:(1)尺規(guī)作圖如圖1所示:

(2)①如圖2,AD平分BAC,∴∠DAC=BAD,, OD過圓心,ODCB;

AB為直徑,∴∠C=90°,ODCB,∴∠OFB=90°,ACOD,,,即OF=2,FD=5﹣2=3,在RTOFB中,BF===ODBC,CF=BF=,ACOD,∴△EFD∽△ECA,,,EF=CF==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的內(nèi)接△ABC的外角∠ACE的平分線交⊙O于點D.DF⊥AC,垂足為F,DE⊥BC,垂足為E.給出下列4個結論:①CE=CF;②∠ACB=∠EDF;③DE是⊙O的切線;④.其中一定成立的是(

A.①②③ B.②③④ C.①③④ D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣(m+2x+2m0

1)求證:不論m為何值,該方程總有兩個實數(shù)根;

2)若此方程的一個根是1,請求出方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某物流公司要把3000噸貨物從M市運到W市.(每日的運輸量為固定值)
(1)從運輸開始,每天運輸?shù)呢浳飮崝?shù)y(單位:噸)與運輸時間x(單位:天)之間有怎樣的函數(shù)關系式?
(2)因受到沿線道路改擴建工程影響,實際每天的運輸量比原計劃少20%,以致推遲1天完成運輸任務,求原計劃完成運輸任務的天數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x+4與兩坐標軸分別相交于點A,B兩點,點C是線段AB上任意一點,過C分別作CD⊥x軸于點D,CE⊥y軸于點E.雙曲線 與CD,CE分別交于點P,Q兩點,若四邊形ODCE為正方形,且 ,則k的值是( )

A.4
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,⊙O是△ABC的外接圓,,點D在邊BC上,AE∥BC,AE=BD.

(1)求證:AD=CE;

(2)如果點G在線段DC上(不與點D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀運用:
當方程中的系數(shù)用字母表示時,這樣的方程叫做含字母系數(shù)的方程,也叫含參數(shù)的方程.
例如:2x+m=4,那么如何解這樣的方程呢?實際上,我們可以把m當作常數(shù),解出方程,
解得:2x=4﹣m.
x= ,
請仿照上面的解法解答下列問題:
(1)解關于x,y的二元一次方程組 ,
(2)若關于x,y的二元一次方程組: 的解滿足不等式組 ,求出整數(shù)a的所有值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,正確的的是(

A.矩形的對角線互相垂直B.菱形的對角線相等

C.矩形的四個角不定相等D.正方形的對角線互相垂直且相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD交于點O,CE平分BCD交AB于點E,交BD于點F,且ABC=60°,AB=2BC,連接OE.下列結論:

ACD=30°;②SABCD=ACBC;③OE:AC=:6;④S△OCF=2S△OEF

成立的個數(shù)有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

同步練習冊答案