精英家教網 > 初中數學 > 題目詳情

【題目】用若干個小立方塊搭成一個幾何體,使它從正面看與從左面看都是如圖的同一個圖.通過實際操作,并與同學們討論,解決下列問題:

(1)所需要的小立方塊的個數是多少?你能找出幾種?

(2)畫出所需個數最少和所需個數最多的幾何體從上面看到的圖,并在小正方形里注明在該位置上小立方塊的個數.

【答案】(1)需要的小立方塊的個數是5~11個,能找出7種.(2)詳見解析.

【解析】

(1)易得此幾何體為3行,3列,3層,分別找到組成它們的每層的立方塊的個數,即可求解;
(2)分別找到組成它們的每層的最少立方塊的個數和最多立方塊的個數畫出即可.

(1)3+2=5(個),9+2=11(個),故所需要的小立方塊的個數是5~11個,能找出7.

(2)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若一個四邊形的兩條對角線互相垂直且相等,則稱這個四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,ACBD,則稱四邊形ABCD為奇妙四邊形.根據“奇妙四邊形”對角線互相垂直的特征可得“奇妙四邊形”的一個重要性質:“奇妙四邊形”的面積等于兩條對角線乘積的一半.根據以上信息回答:

(1)矩形 “奇妙四邊形”(填“是”或“不是”);

(2)如圖2,已知⊙O的內接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;

(3)如圖3,已知⊙O的內接四邊形ABCD是“奇妙四邊形”作OMBCM.請猜測OMAD的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線l1過點A(0,4)與點D(4,0),直線l2:y=x+1與x軸交于點C,兩直線l1,l2相交于點B.

(1)求直線l1的函數表達式;

(2)求點B的坐標;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經過點B,另一邊與射線DC相交于點Q,設A、P兩點間的距離為x

探究:

1)當點Q在邊CD上時,線段PQ與線段PB之間有怎樣的大小關系?試證明你觀察到的結論;

2)當點Q在邊CD上時,設四邊形PBCQ的面積為y,求yx之間的函數關系式,并寫出x的取值范圍;(3)當點P在線段AC上滑動時,△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應x的值;如果不可能,試說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F.

(1)試判斷直線BC與⊙O的位置關系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD和正方形EFGC面積分別為6416

1)請寫出點AE,F的坐標;

2)求SBDF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】9分)為弘揚 東亞文化,某單位開展了東亞文化之都演講比賽,在安排1位女選手和3位男選手的出場順序時,采用隨機抽簽方式.

1)請直接寫出第一位出場是女選手的概率;

2)請你用畫樹狀圖或列表的方法表示第一、二位出場選手的所有等可能結果,并求出他們都是男選手的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】王曉同學要證明命題“對角線相等的平行四邊形是矩形”是正確的,她先作出了如圖所示的平行四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖,在平行四邊形ABCD中,

求證:平行四邊形ABCD

(1)在方框中填空,以補全已知和求證;

(2)按王曉的想法寫出證明過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為3的正方形中,點邊上的點,,;且交正方形外角的平分線于點,交邊于點.

1)求證:AE=EP;

2)在邊上是否存在點,使得四邊形是平行四邊形?若存在,請給予證明;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案