【題目】如圖,正方形的邊長是的平分線交于點,若點分別是上的動點,則的最小值是_______.

【答案】

【解析】

DAE的垂線交AEF,交ACD′,再過D′D′P′AD,由角平分線的性質(zhì)可得出D′D關(guān)于AE的對稱點,進而可知D′P′即為DQ+PQ的最小值.

解:解:作D關(guān)于AE的對稱點D′,再過D′D′P′ADP′

DD′AE,

∴∠AFD=AFD′,

AF=AF,∠DAE=CAE

∴△DAF≌△D′AF,

D′D關(guān)于AE的對稱點,AD′=AD=5,

D′P′即為DQ+PQ的最小值,

∵四邊形ABCD是正方形,

∴∠DAD′=45°,

AP′=P′D′

∴在RtAP′D′中,

P′D′2+AP′2=AD′2,AD′2=25

AP′=P′D',

2P′D′2=AD′2,即2P′D′2=25,

,即DQ+PQ的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,對角線ACBD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展開后,折疊DE分別交AB、ACE、G,連接GF,下列結(jié)論:①∠FGD112.5°BE2OGSAGDSOGD④四邊形AEFG是菱形( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要從小王和小李兩名同學(xué)中挑選一人參加全市知識競賽,在最近的五次選拔測試中,他倆的成績分別如下表:

次數(shù)

1

2

3

4

5

小王

60

75

100

90

75

小李

70

90

100

80

80

根據(jù)上表解答下列問題:

(1)完成下表:

姓名

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差

小王

80

75

75

190

小李

(2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是誰?若將80分以上(含80分)的成績視為優(yōu)秀,則小王、小李在這五次測試中的優(yōu)秀率各是多少?

(3)歷屆比賽表明,成績達到80分以上(含80分)就很可能獲獎,成績達到90分以上(含90分)就很可能獲得一等獎,那么你認為選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是某一計算程序,回答如下問題:

(1)當(dāng)輸入某數(shù)后,第一次得到的結(jié)果為5,則輸入的數(shù)值x_______;

(2)若輸入的x的值為16時,第1次得到的結(jié)果為8,第2次得到的結(jié)果為4,…,則第2019次得到的結(jié)果是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角CED=60°,在離電線桿6m的B處安置高為1.5m的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了改善教室空氣環(huán)境,某校九年級1班班委會計劃到朝陽花卉基地購買綠植.已知該基地一盆綠蘿與一盆吊蘭的價格之和是12元.班委會決定用60元購買綠蘿,用90元購買吊蘭,所購綠蘿數(shù)量正好是吊蘭數(shù)量的兩倍.

(1)分別求出每盆綠蘿和每盆吊蘭的價格;

(2)該校九年級所有班級準備一起到該基地購買綠蘿和吊蘭共計90盆,其中綠蘿數(shù)量不超過吊蘭數(shù)量的一半,該基地特地對吊蘭價格給出了如下的優(yōu)惠政策,一次性購買的吊蘭超過20盆時,超過部分的吊蘭每盆的價格打8折,根據(jù)該基地的優(yōu)惠信息,九年級購買這兩種綠植各多少盆時總費用最少?最少費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊ABC的邊長為3,分別以頂點BA、C為圓心,BA長為半徑作、,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形,設(shè)點l為對稱軸的交點.

(1)如圖2,將這個圖形的頂點A與線段MN作無滑動的滾動,當(dāng)它滾動一周后點A與端點N重合,則線段MN的長為 ;

(2)如圖3,將這個圖形的頂點A與等邊DEF的頂點D重合,且ABDE,DE=2π,將它沿等邊DEF的邊作無滑動的滾動當(dāng)它第一次回到起始位置時,求這個圖形在運動過程中所掃過的區(qū)域的面積;

(3)如圖4,將這個圖形的頂點BO的圓心O重合,O的半徑為3,將它沿O的圓周作無滑動的滾動,當(dāng)它第n次回到起始位置時,點I所經(jīng)過的路徑長為 (請用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市試銷一種成本價為80/瓶的白酒,規(guī)定試銷期間單價不低于100/瓶且不高于160/瓶.經(jīng)試銷發(fā)現(xiàn),銷售量y(瓶)與銷售單價x(元/瓶)符合一次函數(shù)關(guān)系,且x=120時,y=100;x=130時,y=95.

(1)求yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)銷售單價x定為每瓶多少元時,銷售利潤(w)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌牛奶供應(yīng)商提供A,B,C,DE五種不同口味的牛奶供學(xué)生選擇.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖所示兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息,解答下列問題:

(1)本次調(diào)查的學(xué)生有多少名?

(2)補全條形統(tǒng)計圖,并計算出喜好C口味牛奶的學(xué)生人數(shù)對應(yīng)的扇形圓心角的度數(shù).

(3)該校共有1 200名學(xué)生訂了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂牛奶的學(xué)生配送一盒牛奶,要使學(xué)生每天都能喝到自己喜好的品味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,B口味牛奶要比C口味牛奶約多送多少盒?

查看答案和解析>>

同步練習(xí)冊答案