【題目】為了美化環(huán)境,學(xué)校準(zhǔn)備在如圖所示的矩形ABCD空地上進(jìn)行綠化,規(guī)劃在中間的一塊四邊形MNPQ上種花,其余的四塊三角形上鋪設(shè)草坪,要求AM=AN=CP=CQ,已知BC=30米,AB=42米,設(shè)AN=x米,種花的面積為y1平方米,草坪面積y2平方米.
(1)分別求y1和y2與x之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍);
(2)當(dāng)AN的長(zhǎng)為多少米時(shí),種花的面積為640平方米?
(3)若種花每平方米需200元,鋪設(shè)草坪每平方米需100元,現(xiàn)設(shè)計(jì)要求種花的面積不大于640平方米,設(shè)學(xué)校所需費(fèi)用W(元),求W與x之間的函數(shù)關(guān)系式,并求出學(xué)校所需費(fèi)用的最大值.
【答案】(1)y1=-2x2+72x;;(2)當(dāng)AN的長(zhǎng)為16米或20米時(shí)種花的面積為640平方米;(3)W=-200(x-18)2+190800,190000.
【解析】
(1)根據(jù)三角形面積公式可得y2的解析式,再用長(zhǎng)方形面積減去y2,即可得y1的函數(shù)解析式;
(2)根據(jù)題意把y1=640代入y1=-2x2+72x得關(guān)于x的方程,解方程即可得;
(3)列出總費(fèi)用的函數(shù)解析式,將其配方成頂點(diǎn)式,根據(jù)花的面積不大于640平方米可得x的范圍,結(jié)合此范圍根據(jù)二次函數(shù)的性質(zhì)即可得函數(shù)的最大值,從而得解.
解:(1)根據(jù)題意,得,y1=42×30-y2=-2x2+72x;
(2)根據(jù)題意,把y1=640代入y1=-2x2+72x得:-2x2+72x=640,
解得:x1=16,x2=20,
故當(dāng)AN的長(zhǎng)為16米或20米時(shí)種花的面積為640平方米;
(3)設(shè)總費(fèi)用為W元,
則W=200(-2x2+72x)+100(2x2-72x+1260)=-200(x-18)2+190800,
由(2)知當(dāng)0<x≤16或20≤x≤30時(shí),y1≤640,
在W=-200(x-18)2+190800中,當(dāng)x<18時(shí),W隨x的增大而增大,當(dāng)x>18時(shí),W隨x的增大而減小,
∴當(dāng)x=16時(shí),W取得最大值,最大值W=190000,
當(dāng)x=20時(shí),W取得最大值,最大值W=190000,
∴學(xué)校所需費(fèi)用的最大值為190000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)在和之間,其部分圖象如圖所示.則下列結(jié)論:①;②;③;④(為實(shí)數(shù));⑤點(diǎn),,是該拋物線上的點(diǎn),則,正確的個(gè)數(shù)有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明為了測(cè)量小河對(duì)岸大樹(shù)BC的高度,他在點(diǎn)A測(cè)得大樹(shù)頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測(cè)得樹(shù)頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為1:2.
(1)求小明從點(diǎn)A到點(diǎn)D的過(guò)程中,他上升的高度;
(2)大樹(shù)BC的高度約為多少米?(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為3的⊙O中,AB是直徑,AC是弦,且AC=4.過(guò)點(diǎn)O作直徑DE⊥AC,垂足為點(diǎn)P,過(guò)點(diǎn)B的直線交AC的延長(zhǎng)線和DE的延長(zhǎng)線于點(diǎn)F、G.
(1)求線段AP、CB的長(zhǎng);
(2)若OG=9,求證:FG是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(2,0)、B(3,1)、C(1,3).
(1)畫(huà)出△ABC沿x軸負(fù)方向平移2個(gè)單位后得到的△A1B1C1,并寫(xiě)出B1的坐標(biāo) ;
(2)以A1點(diǎn)為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針?lè)较蛐D(zhuǎn)90°得△A1B2C2,畫(huà)出△A1B2C2,并寫(xiě)出C2的坐標(biāo) ;
(3)直接寫(xiě)出過(guò)B、B1、C2三點(diǎn)的圓的圓心坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)已知∠DAB=60°,AF是∠DAB的平分線,若AD=3,求DC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:體質(zhì)測(cè)試成績(jī)達(dá)到90.0分及以上的為優(yōu)秀;達(dá)到80.0分至89.9分的為良好;達(dá)到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級(jí)學(xué)生體質(zhì)健康狀況,從該校九年級(jí)學(xué)生中隨機(jī)抽取了10%的學(xué)生進(jìn)行體質(zhì)測(cè)試,測(cè)試結(jié)果如下面的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖所示。
各等級(jí)學(xué)生平均分統(tǒng)計(jì)表
等級(jí) | 優(yōu)秀 | 良好 | 及格 | 不及格 |
平均分 | 92.1 | 85.0 | 69.2 | 41.3 |
各等級(jí)學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖
(1)扇形統(tǒng)計(jì)圖中“不及格”所占的百分比是 ;
(2)計(jì)算所抽取的學(xué)生的測(cè)試成績(jī)的平均分;
(3)若所抽取的學(xué)生中所有不及格等級(jí)學(xué)生的總分恰好等于某一個(gè)良好等級(jí)學(xué)生的分?jǐn)?shù),請(qǐng)估計(jì)該九年級(jí)學(xué)生中約有多少人達(dá)到優(yōu)秀等級(jí)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)C點(diǎn)的直線互相垂直,垂足為D,且AC平分∠DAB.
(1)求證:DC為⊙O的切線;
(2)若∠DAB=60°,⊙O的半徑為3,求線段AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)用配方法解方程:
(2)已知點(diǎn)(5,0)在拋物線y=-x2+(k+1)x-k上,求出拋物線的對(duì)稱軸.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com