【題目】若二次函數(shù)y=﹣x2+4x+c的圖象經(jīng)過(guò)A(1,y1),B(﹣1,y2),C(2+ ,y3)三點(diǎn),則y1、y2、y3的大小關(guān)系是( )
A.y1<y2<y3
B.y1<y3<y2
C.y2<y3<y1
D.y2<y1<y3

【答案】C
【解析】解:∵y=﹣x2+4x+c=﹣x2+4x﹣4+4+c,

=﹣(x﹣2)2+4+c,

∴二次函數(shù)對(duì)稱(chēng)軸為直線x=2,

∵2﹣1=1,

2﹣(﹣1)=3,

2+ ﹣2= ,

∴1< <3,

∴y2<y3<y1

所以答案是:C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

關(guān)于x的方程:的解是,;的解是的解是的解是,;

請(qǐng)觀察上述方程與解的特征,比較關(guān)于x的方程與它們的關(guān)系,猜想它的解是什么?并利用“方程的解”的概念進(jìn)行驗(yàn)證.

由上述的觀察、比較、猜想、驗(yàn)證,可以得出結(jié)論:

如果方程的左邊是未知數(shù)與其倒數(shù)的倍數(shù)的和,方程的右邊的形式與左邊完全相同,只是把其中的未知數(shù)換成了某個(gè)常數(shù),那么這樣的方程可以直接得解,請(qǐng)用這個(gè)結(jié)論解關(guān)于x的方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;
(2)若方程的兩根恰好是一個(gè)矩形的兩邊長(zhǎng),且k=4,求該矩形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=ax2+bx+ 經(jīng)過(guò)A(1,0),B(7,0)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊三角形ABC.

(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點(diǎn)M,是SABM= SABC?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,E是線段AC上的動(dòng)點(diǎn),F(xiàn)是線段BC上的動(dòng)點(diǎn),AF與BE相交于點(diǎn)P.
①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系及∠APB的度數(shù),并說(shuō)明理由;
②若AF=BE,當(dāng)點(diǎn)E由A運(yùn)動(dòng)到C時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解龍崗區(qū)學(xué)生喜歡球類(lèi)活動(dòng)的情況,采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛(ài)好,根據(jù)調(diào)查的結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖,,要求每位學(xué)生只能選擇一種自己喜歡的球類(lèi)),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

1)本次共調(diào)查的學(xué)生人數(shù)為___,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)扇形統(tǒng)計(jì)圖中m=___n=___;

3)表示足球的扇形的圓心角是___度;

4)若龍崗區(qū)初中學(xué)生共有60000人,則喜歡乒乓球的有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了搞好對(duì)“傳統(tǒng)文化學(xué)習(xí)”的宣傳活動(dòng),對(duì)本校部分學(xué)生(隨機(jī)抽查)進(jìn)行了一次相關(guān)知識(shí)了解程度的調(diào)查測(cè)試(成績(jī)分為A、B、C、D、E五個(gè)組,x表示測(cè)試成績(jī)).通過(guò)對(duì)測(cè)試成績(jī)的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題:

(1)參加調(diào)查測(cè)試的學(xué)生為人;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)本次調(diào)查測(cè)試成績(jī)中的中位數(shù)落在組內(nèi);
(4)若測(cè)試成績(jī)?cè)?0分以上(含80分)為優(yōu)秀,該中學(xué)共有學(xué)生2600人,請(qǐng)你根據(jù)樣本數(shù)據(jù)估計(jì)全校學(xué)生測(cè)試成績(jī)?yōu)閮?yōu)秀的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABCACB=90°,AC=BC,P是△ABC內(nèi)的一點(diǎn),PA=3,PB=1,CD=PC=2,CDPC.

(1)找出圖中一對(duì)全等三角形,并證明;

(2)求∠BPC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是線段AB上一點(diǎn),AB=12cm,CD兩點(diǎn)分別從PB出發(fā)以1cm/s、2cm/s的速度沿直線AB向左運(yùn)動(dòng)(C在線段AP上,D在線段BP上),運(yùn)動(dòng)的時(shí)間為t.

1)當(dāng)t=1時(shí),PD=2AC,請(qǐng)求出AP的長(zhǎng);

2)當(dāng)t=2時(shí),PD=2AC,請(qǐng)求出AP的長(zhǎng);

3)若CD運(yùn)動(dòng)到任一時(shí)刻時(shí),總有PD=2AC,請(qǐng)求出AP的長(zhǎng);

4)在(3)的條件下,Q是直線AB上一點(diǎn),且AQBQ=PQ,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列解題過(guò)程,然后解答后面兩個(gè)問(wèn)題.

解方程:|x3|2

解:當(dāng)x30時(shí),原方程可化為x32,解得x=-1;

當(dāng)x30時(shí),原方程可化為x3=-2,解得x=-5

所以原方程的解是x=-1x=-5

1解方程:|3x2|40

2已知關(guān)于x的方程|x2|b1

①若方程無(wú)解,則b的取值范圍是

②若方程只有一個(gè)解,則b的值為

③若方程有兩個(gè)解,則b的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案