【題目】如圖,將一對(duì)直角三角形卡片的斜邊AC重合擺放,直角頂點(diǎn)B,D在AC的兩側(cè),連接BD,交AC于點(diǎn)O,取AC,BD的中點(diǎn)E,F,連接EF.若AB=12,BC=5,且AD=CD,則EF的長(zhǎng)為_____.
【答案】.
【解析】
先求出BE的值,作DM⊥AB,DN⊥BC延長(zhǎng)線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質(zhì)得BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對(duì)角線可得出BD= , BF=BD= , EF== .
∵∠ABC=∠ADC,
∴A,B,C,D四點(diǎn)共圓,
∴AC為直徑,
∵E為AC的中點(diǎn),
∴E為此圓圓心,
∵F為弦BD中點(diǎn),
∴EF⊥BD,
連接BE,∴BE=AC= = =;
作DM⊥AB,DN⊥BC延長(zhǎng)線,∠BAD=∠BCN,
在△ADM和△CDN中,
,
∴△ADM≌△CDN(AAS),
∴AM=CN,DM=DN,
∵∠DMB=∠DNC=∠ABC=90°,
∴四邊形BNDM為矩形,
又∵DM=DN,
∴矩形BNDM為正方形,
∴BM=BN,
設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,
∴12-x=5+x,x=,BN=,
∵BD為正方形BNDM的對(duì)角線,
∴BD=BN= ,BF=BD= ,
∴EF=== .
故答案為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七個(gè)邊長(zhǎng)為1的正方形按如圖所示的方式放置在平面直角坐標(biāo)系中,直線l經(jīng)過(guò)點(diǎn)A(4,4)和點(diǎn)B,且將這七個(gè)正方形的面積分成相等的兩部分,則直線l的函數(shù)表達(dá)式是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形,.動(dòng)點(diǎn)從點(diǎn)出發(fā),以的速度在邊的延長(zhǎng)線上運(yùn)動(dòng).以為邊作等邊三角形,點(diǎn)在直線同側(cè).連結(jié)相交于點(diǎn).設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.
(1)當(dāng) 時(shí),.
(2)求證:.
(3)求的度數(shù).
(4)設(shè)與交于點(diǎn),與交于點(diǎn),連結(jié),當(dāng)點(diǎn)將邊分成的兩部分時(shí),直接寫出的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:人教版八年級(jí)上冊(cè)數(shù)學(xué)教材第121頁(yè)的“閱讀與思考”內(nèi)容介紹,在因式分解中有一類形如x2+(p+q)x+pq的多項(xiàng)式,其常數(shù)項(xiàng)是兩個(gè)因數(shù)的積,而一次項(xiàng)系數(shù)恰好是這兩個(gè)因數(shù)的和,則我們可以把它分解成x2+(p+q)x+pq=(x+p)(x+q).
例如,x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2),具體做法是先分解二次項(xiàng)系數(shù),分別寫在十字交叉線的左上角和左下角,再分解常數(shù)項(xiàng),分別寫在十字交叉線的右上角和右下角:然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù)(如圖),這種方法稱為“十字相乘法”.
解決問(wèn)題:
(1)請(qǐng)模仿上例,運(yùn)用十字相乘法將多項(xiàng)式x2﹣x﹣6因式分解(畫出十字相乘圖)
(2)若多項(xiàng)式x2+kx﹣12可以分解成(x+m)(x+n)(m,n為整數(shù))的形式,則m+n的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)D在BC上,BC平分∠ABE,BE∥AC,∠ADB=60°,∠CAD=2∠BDE,AB=14,BD=16,BE=4,則CD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,解答下列問(wèn)題:
神奇的等式
當(dāng)a≠b時(shí),一般來(lái)說(shuō)會(huì)有a2+b≠a+b2,然而當(dāng)a和b是特殊的分?jǐn)?shù)時(shí),這個(gè)等式卻是成立的例如:
()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…
(1)特例驗(yàn)證:
請(qǐng)?jiān)賹懗鲆粋(gè)具有上述特征的等式: ;
(2)猜想結(jié)論:
用n(n為正整數(shù))表示分?jǐn)?shù)的分母,上述等式可表示為: ;
(3)證明推廣:
①(2)中得到的等式一定成立嗎?若成立,請(qǐng)證明;若不成立,說(shuō)明理由;
②等式()2+=+()2(m,n為任意實(shí)數(shù),且n≠0)成立嗎?若成立,請(qǐng)寫出一個(gè)這種形式的等式(要求m,n中至少有一個(gè)為無(wú)理數(shù));若不成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E在BD的延長(zhǎng)線上,且△EAC是等邊三角形.
(1)求證:四邊形ABCD是菱形.
(2)若AC=8,AB=5,求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分線 AD 與邊 BC 的垂直平分線 DG 相 交于點(diǎn) D ,過(guò)點(diǎn) D 分別作 DE⊥AB ,DF⊥AC ,垂足分別為 E 、F,求BE的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com