【題目】如圖,在平面直角坐標(biāo)系中,點是一次函數(shù)圖象上兩點,它們的橫坐標(biāo)分別為其中,過點分別作軸的平行線,交拋物線于點,
(1)若求的值;
(2)點是拋物線上的一點,求面積的最小值.
【答案】(1);(2)的最小值為
【解析】
(1)利用函數(shù)圖象上點的坐標(biāo)特征用a表示點A、B的坐標(biāo)以及點C、D的坐標(biāo),再用a表示AD、CB的長,根據(jù)AD=BC,列方程即可求解;
(2)作出如圖的輔助線,設(shè)點E(,),求得點M的坐標(biāo)為(,),再求得EM,根據(jù)得到二次函數(shù),利用二次函數(shù)的性質(zhì)即可求解.
(1)∵點A、B是一次函數(shù)圖象上兩點,它們的橫坐標(biāo)分別為,,
∴點A的坐標(biāo)為(a,a),點B的坐標(biāo)為(a+3,a+3),
將x=a,代入得:,
將x=a+3,代入得:,
∴點D的坐標(biāo)為(,),點C的坐標(biāo)為(,),
∴AD=,
CB=(),
∵AD=BC,
∴,
解得:;
(2)設(shè)點E(,),過E作EM垂直于軸交AB于點M,作BF⊥EM,AG⊥EM,垂足分別為F,G,如圖:
∵點M在直線上,
∴點M的坐標(biāo)為(,),
∴EM,
∴
,
∵,
∴當(dāng)時,的最小值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情期間,我市對學(xué)生進(jìn)行了“停課不停學(xué)”的線上教學(xué)活動.某中學(xué)為了解這期間九年級學(xué)生數(shù)學(xué)學(xué)習(xí)的情況,開學(xué)后進(jìn)行了兩次診斷性練習(xí).綜合成績由兩次練習(xí)成績組成,其中第一次練習(xí)成績占40%,第二次練習(xí)成績占60%.當(dāng)綜合成績不低于135分時,該生數(shù)學(xué)學(xué)科綜合評價為優(yōu)秀.
(1)小明同學(xué)的兩次練習(xí)成績之和為260分,綜合成績?yōu)?/span>132分,則他這兩次練習(xí)成績各得多少分?
(2)如果小張同學(xué)第一次練習(xí)成績?yōu)?/span>120分,綜合成績要達(dá)到優(yōu)秀,他的第二次練習(xí)成績至少要得多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實疫情期間的垃圾分類,樹立全面環(huán)保意識,某校舉行了“垃圾分類,綠色環(huán)!敝R競賽活動,根據(jù)學(xué)生的成績劃分為,,,四個等級,并繪制了不完整的兩種統(tǒng)計圖:
根據(jù)圖中提供的信息,回答下列問題:
(1)參加知識競賽的學(xué)生共有______人,并把條形統(tǒng)計圖補(bǔ)充完整;
(2)扇形統(tǒng)計圖中,______,______,等級對應(yīng)的圓心角為______度;
(3)小明是四名獲等級的學(xué)生中的一位,學(xué)校將從獲等級的學(xué)生中任選取2人,參加市舉辦的知識競賽,請用列表法或畫樹狀圖,求小明被選中參加區(qū)知識競賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=10,BC=15,tan∠A=點P為AD邊上任意一點,連結(jié)PB,將PB繞點P逆時針旋轉(zhuǎn)90°得到線段PQ.若點Q恰好落在平行四邊形ABCD的邊所在的直線上,則PB旋轉(zhuǎn)到PQ所掃過的面積____(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角標(biāo)系中,拋物線C:y=與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點D為y軸正半軸上一點.且滿足OD=OC,連接BD,
(1)如圖1,點P為拋物線上位于x軸下方一點,連接PB,PD,當(dāng)S△PBD最大時,連接AP,以PB為邊向上作正△BPQ,連接AQ,點M與點N為直線AQ上的兩點,MN=2且點N位于M點下方,連接DN,求DN+MN+AM的最小值
(2)如圖2,在第(1)問的條件下,點C關(guān)于x軸的對稱點為E,將△BOE繞著點A逆時針旋轉(zhuǎn)60°得到△B′O′E′,將拋物線y=沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點E,此時拋物線C′與x軸的右交點記為點F,連接E′F,B′F,R為線段E’F上的一點,連接B′R,將△B′E′R沿著B′R翻折后與△B′E′F重合部分記為△B′RT,在平面內(nèi)找一個點S,使得以B′、R、T、S為頂點的四邊形為矩形,求點S的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的點坐標(biāo)為,點在軸上,點在軸上.點是邊上的動點,連接,作點關(guān)于線段的對稱點.已知一條拋物線經(jīng)過三點,且點恰好是拋物線的頂點,則的值為()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對教材“課題學(xué)習(xí)”中的“用一張正方形折出一個正八邊形”的問題進(jìn)行了認(rèn)真地探索.他先把正方形沿對角線對折,再把對折,使點落在上,記為點.然后沿的中垂線折疊,得到折痕,如圖1,類似地,折出其余三條折痕,得到八邊形,如圖2.
(1)求證:是等腰直角三角形.
(2)若,求的長.(用含的代數(shù)式表示)
(3)我們把八條邊長相等,八個內(nèi)角都相等的八邊形叫做正八邊形,試說明八邊形是正八邊形,請把過程補(bǔ)充完整.
解:理由如下:
①
同理可得:
②
同理可得:
∴八邊形是正八邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E是AD邊上一點,AE:ED=1:2,連接AC、BE交于點F.若S△AEF=1,則S四邊形CDEF=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作發(fā)現(xiàn):如圖,已知△ABC和△ADE均為等腰三角形,AB=AC,AD=AE,將這兩個三角形放置在一起,使點B,D,E在同一直線上,連接CE.
(1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求證:△BAD≌△CAE;
(2)在(1)的條件下,求∠BEC的度數(shù);
拓廣探索:(3)如圖2,若∠CAB=∠EAD=120°,BD=4,CF為△BCE中BE邊上的高,請直接寫出EF的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com