(2008•烏魯木齊)如圖,河流兩岸a,b互相平行,C,D是河岸a上間隔50m的兩個電線桿.某人在河岸b上的A處測得∠DAB=30°,然后沿河岸走了100m到達(dá)B處,測得∠CBF=60°,求河流的寬度CF的值.(結(jié)果精確到個位)

【答案】分析:本題可將已知的條件構(gòu)建到直角三角形中進(jìn)行計算,過點C作CE∥AD,交AB于E,那么∠CEF=∠DAB=30°且AE=CD=50,根據(jù)觀察發(fā)現(xiàn),∠CBF=∠CEB+∠ECB=60°,而∠CEB=30°,那么∠ECB=∠CEB,那么CB=BE,直角三角形CBF中,有了CB的長,有銳角的度數(shù),CF的值便可求出來了.
解答:解:過點C作CE∥AD,交AB于E
∵CD∥AE,CE∥AD
∴四邊形AECD是平行四邊形
∴AE=CD=50m,EB=AB-AE=50m,∠CEB=∠DAB=30°
又∠CBF=60°,故∠ECB=30°
∴CB=EB=50m
∴在Rt△CFB中,CF=CB•sin∠CBF=50•sin60°≈43m
答:河流的寬度CF的值為43m.
點評:本題是將實際問題轉(zhuǎn)化為直角三角形中的數(shù)學(xué)問題,可通過作輔助線構(gòu)造直角三角形,再把條件和問題轉(zhuǎn)化到這個直角三角形中,使問題解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2008•烏魯木齊)先閱讀,再解答:我們在判斷點(-7,20)是否在直線y=2x+6上時,常用的方法:把x=-7代入y=2x+6中,由2×(-7)+6=-8≠20,判斷出點(-7,20)不在直線y=2x+6上.小明由此方法并根據(jù)“兩點確定一條直線”,推斷出點A(1,2),B(3,4),C(-1,6)三點可以確定一個圓.你認(rèn)為他的推斷正確嗎?請你利用上述方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江西省上饒市余干縣中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•烏魯木齊)如圖,在平面直角坐標(biāo)系中,以點C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點,開口向下的拋物線經(jīng)過點A,B,且其頂點P在⊙C上.
(1)求∠ACB的大小;
(2)寫出A,B兩點的坐標(biāo);
(3)試確定此拋物線的解析式;
(4)在該拋物線上是否存在一點D,使線段OP與CD互相平分?若存在,求出點D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(24)(解析版) 題型:解答題

(2008•烏魯木齊)如圖,在平面直角坐標(biāo)系中,以點C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點,開口向下的拋物線經(jīng)過點A,B,且其頂點P在⊙C上.
(1)求∠ACB的大;
(2)寫出A,B兩點的坐標(biāo);
(3)試確定此拋物線的解析式;
(4)在該拋物線上是否存在一點D,使線段OP與CD互相平分?若存在,求出點D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省茂名十中初中數(shù)學(xué)綜合練習(xí)試卷(7)(解析版) 題型:解答題

(2008•烏魯木齊)如圖,在平面直角坐標(biāo)系中,以點C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點,開口向下的拋物線經(jīng)過點A,B,且其頂點P在⊙C上.
(1)求∠ACB的大。
(2)寫出A,B兩點的坐標(biāo);
(3)試確定此拋物線的解析式;
(4)在該拋物線上是否存在一點D,使線段OP與CD互相平分?若存在,求出點D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•烏魯木齊)先閱讀,再解答:我們在判斷點(-7,20)是否在直線y=2x+6上時,常用的方法:把x=-7代入y=2x+6中,由2×(-7)+6=-8≠20,判斷出點(-7,20)不在直線y=2x+6上.小明由此方法并根據(jù)“兩點確定一條直線”,推斷出點A(1,2),B(3,4),C(-1,6)三點可以確定一個圓.你認(rèn)為他的推斷正確嗎?請你利用上述方法說明理由.

查看答案和解析>>

同步練習(xí)冊答案