【題目】如圖1,點(diǎn),在反比例函數(shù)圖象上,作直線,連接、

1)求反比例函數(shù)的表達(dá)式和的值;

2)求的面積;

3)如圖2,是線段上一點(diǎn),作軸于點(diǎn),過點(diǎn)軸的垂線,交反比例函數(shù)圖象于點(diǎn),若,求出點(diǎn)的坐標(biāo).

【答案】1,;(2;(3)點(diǎn)的坐標(biāo)為

【解析】

1)先根據(jù)點(diǎn),利用待定系數(shù)法可求出反比例函數(shù)的解析式,再把代入解析式即可求出m的值;

2)如圖,先利用待定系數(shù)法求出直線AB的解析式,從而可得點(diǎn)M、N的坐標(biāo),再根據(jù)三角形的面積公式即可得;

3)先設(shè)點(diǎn)E的坐標(biāo)為,從而可得點(diǎn)F的坐標(biāo)為,再分別得出AD、EF的長,然后根據(jù)求解即可得.

1)設(shè)反比例函數(shù)的解析式為

代入,得

則反比例函數(shù)的解析式為

代入,得

解得;

2)設(shè)直線的解析式為

、代入得,解得

則直線的解析式為

當(dāng)時,,解得,則點(diǎn)N的坐標(biāo)為

當(dāng)時,,則點(diǎn)M的坐標(biāo)為

點(diǎn)Ay軸的距離等于1,點(diǎn)Bx軸的距離等于1

3)由題意,可設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)F的坐標(biāo)為,且

解得,

經(jīng)檢驗(yàn),,都是分式方程的根,且符合的條件

當(dāng)時,

當(dāng)時,

則點(diǎn)的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時,一個月工作25天.月工資底薪800元,另加計(jì)件工資.加工1A型服裝計(jì)酬16元,加工1B型服裝計(jì)酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1A型服裝和2B型服裝需4小時,加工3A型服裝和1B型服裝需7小時.(工人月工資=底薪+計(jì)件工資)

(1)一名熟練工加工1A型服裝和1B型服裝各需要多少小時?

(2)一段時間后,公司規(guī)定:每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運(yùn)用所學(xué)知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線經(jīng)過,兩點(diǎn),拋物線與軸的另一交點(diǎn)為

1)求拋物線的解析式;

2)若點(diǎn)為第一象限內(nèi)拋物線上一點(diǎn),設(shè)四邊形的面積為,求的最大值;

3)若是線段上一動點(diǎn),在軸上是否存在這樣的點(diǎn),使為等腰三角形且為直角三角形?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

1)如圖①,在等腰RtABC中,斜邊AC4,點(diǎn)DAC上一點(diǎn),連接BD,則BD的最小值為   ;

問題探究

2)如圖②,在ABC中,ABAC5,BC6,點(diǎn)MBC上一點(diǎn),且BM4,點(diǎn)P是邊AB上一動點(diǎn),連接PM,將BPM沿PM翻折得到DPM,點(diǎn)D與點(diǎn)B對應(yīng),連接AD,求AD的最小值;

問題解決

3)如圖③,四邊形ABCD是規(guī)劃中的休閑廣場示意圖,其中∠BAD=∠ADC135°,∠DCB30°,AD2km,AB3km,點(diǎn)MBC上一點(diǎn),MC4km.現(xiàn)計(jì)劃在四邊形ABCD內(nèi)選取一點(diǎn)P,把DCP建成商業(yè)活動區(qū),其余部分建成景觀綠化區(qū).為方便進(jìn)入商業(yè)區(qū),需修建小路BP、MP,從實(shí)用和美觀的角度,要求滿足∠PMB=∠ABP,且景觀綠化區(qū)面積足夠大,即DCP區(qū)域面積盡可能。畡t在四邊形ABCD內(nèi)是否存在這樣的點(diǎn)P?若存在,請求出DCP面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,與x軸交于兩點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

(Ⅰ)求點(diǎn)A,B和點(diǎn)C的坐標(biāo);

(Ⅱ)已知P是線段上的一個動點(diǎn).

①若軸,交拋物線于點(diǎn)Q,當(dāng)取最大值時,求點(diǎn)P的坐標(biāo);

②求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊OA1B1,頂點(diǎn)A1在雙曲線y=(x>0)上,點(diǎn)B1的坐標(biāo)為(2,0).過B1B1A2OA1交雙曲線于點(diǎn)A2,過A2A2B2A1B1x軸于點(diǎn)B2,得到第二個等邊B1A2B2;過B2B2A3B1A2交雙曲線于點(diǎn)A3,過A3A3B3A2B2x軸于點(diǎn)B3,得到第三個等邊B2A3B3;以此類推,,則點(diǎn)B6的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,射線與邊交于點(diǎn)、分別為中點(diǎn),設(shè)點(diǎn)、到射線的距離分別為、,則的最大值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[閱讀理解]

構(gòu)造“平行八字型”全等三角形模型是證明線段相等的一種方法,我們常用這種方法證明線段的中點(diǎn)問題.

例如:如圖,D是△ABCAB上一點(diǎn),EAC的中點(diǎn),過點(diǎn)CCFAB,交DE的延長線于點(diǎn)F,則易證E是線段DF的中點(diǎn).

[經(jīng)驗(yàn)運(yùn)用]

請運(yùn)用上述閱讀材料中所積累的經(jīng)驗(yàn)和方法解決下列問題.

1)如圖1,在正方形ABCD中,點(diǎn)EAB上,點(diǎn)FBC的延長線上,且滿足AECF,連接EFAC于點(diǎn)G

求證:GEF的中點(diǎn);

CGBE;

[拓展延伸]

2)如圖2,在矩形ABCD中,AB2BC,點(diǎn)EAB上,點(diǎn)FBC的延長線上,且滿足AE2CF,連接EFAC于點(diǎn)G.探究BECG之間的數(shù)量關(guān)系,并說明理由;

3)如圖3,若點(diǎn)EBA的延長線上,點(diǎn)F在線段BC上,DFAC于點(diǎn)H,BF2,CF1,( 2)中的其它條件不變,請直接寫出GH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兒童用藥的劑量常常按他們的體重來計(jì)算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內(nèi)時,每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實(shí)中,該藥品每次實(shí)際服用量可以比每次正常服用略高一些,但不能超過正常服用量的12倍,否則會對兒童的身體造成較大損害.

1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時可以一次服下一袋藥?

查看答案和解析>>

同步練習(xí)冊答案