【題目】若整數(shù)a使關(guān)于x的分式方程=2有整數(shù)解,且使關(guān)于x的不等式組至少有4個整數(shù)解,則滿足條件的所有整數(shù)a的和是( )
A.﹣14B.﹣17C.﹣20D.﹣23
科目:初中數(shù)學 來源: 題型:
【題目】在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.
【1】從A、D、E、F四點中任意取一點,以所取的這一點及B、C為頂點三角形,則所畫三角形是等腰三角形的概率是 ▲ ;
【2】從A、D、E、F四點中先后任意取兩個不同的點,以所取的這兩點及B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率(用樹狀圖或列表求解).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋中,有三個除顏色外其它均相同的小球,其中兩個黑色,一個紅色.
(1)請用表格或樹狀圖求出:一次隨機取出2個小球,顏色不同的概率.
(2)如果老師在布袋中加入若干個紅色小球.然后小明通過做實驗的方式猜測加入的小球數(shù),小 明每次換出一個小球記錄下慎色并放回,實驗數(shù)據(jù)如下表:
實驗次數(shù) | 100 | 200 | 300 | 400 | 500 | 1000 |
摸出紅球 | 78 | 147 | 228 | 304 | 373 | 752 |
請你幫小明算出老師放入了多少個紅色小球.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①拋物線y=ax2+bx+4(a≠0)與x軸,y軸分別交于點A(﹣1,0),B(4,0),點C三點.
(1)試求拋物線的解析式;
(2)點D(3,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)點N在拋物線的對稱軸上,點M在拋物線上,當以M、N、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小林在使用筆記本電腦時,為了散熱,他將電腦放在散熱架CAD上,忽略散熱架和電腦的厚度,側(cè)面示意圖如圖1所示,已知電腦顯示屏OB與底板OA的夾角為135°,OB=OA=25cm,OE⊥AD于點E,OE=12.5cm.
(1)求∠OAE的度數(shù);
(2)若保持顯示屏OB與底板OA的135°夾角不變,將電腦平放在桌面上如圖2中的所示,則顯示屏頂部比原來頂部B大約下降了多少?(參考數(shù)據(jù):結(jié)果精確到0.1cm.參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長為3的正方形ABCD在第一象限內(nèi),AB∥x軸,點A的坐標為(5,4)經(jīng)過點O、點C作直線l,將直線l沿y軸上下平移.
(1)當直線l與正方形ABCD只有一個公共點時,求直線l的解析式;
(2)當直線l在平移過程中恰好平分正方形ABCD的面積時,直線l分別與x軸、y軸相交于點E、點F,連接BE、BF,求△BEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為了解九年級學生對“八禮四儀”的掌握情況,對該年級的500名同學進行問卷測試,并隨機抽取了10名同學的問卷,統(tǒng)計成績?nèi)缦拢?/span>
得分 | 10 | 9 | 8 | 7 | 6 |
人數(shù) | 3 | 3 | 2 | 1 | 1 |
(1)計算這10名同學這次測試的平均得分;
(2)如果得分不少于9分的定義為“優(yōu)秀”,估計這 500名學生對“八禮四儀”掌握情況優(yōu)秀的人數(shù);
(3)小明所在班級共有40人,他們?nèi)繀⒓恿诉@次測試,平均分為7.8分.小明的測試成績是8分,小明說,我的測試成績在班級中等偏上,你同意他的觀點嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個不透明的袋子,甲袋子里裝有標有兩個數(shù)字的張卡片,乙袋子里裝有標有三個數(shù)字的張卡片,兩個袋子里的卡片除標有的數(shù)字不同外,其大小質(zhì)地完全相同.
(1)從乙袋里任意抽出一張卡片,抽到標有數(shù)字的概率為 .
(2)求從甲、乙兩個袋子里各抽一張卡片,抽到標有兩個數(shù)字的卡片的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸相交于A(﹣1,0),B(m,0)兩點,與y軸相交于點C(0,﹣3),拋物線的頂點為D.
(1)求B、D兩點的坐標;
(2)若P是直線BC下方拋物線上任意一點,過點P作PH⊥x軸于點H,與BC交于點M,設(shè)F為y軸一動點,當線段PM長度最大時,求PH+HF+CF的最小值;
(3)在第(2)問中,當PH+HF+CF取得最小值時,將△OHF繞點O順時針旋轉(zhuǎn)60°后得到△OH′F′,過點F′作OF′的垂線與x軸交于點Q,點R為拋物線對稱軸上的一點,在平面直角坐標系中是否存在點S,使得點D、Q、R、S為頂點的四邊形為菱形,若存在,請直接寫出點S的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com