【題目】如圖,為半圓的直徑,點、是半圓弧上的三個點,且,若,,連接于點,則的長是______.

【答案】

【解析】

連接OC,根據(jù)菱形的判定,可得四邊形AODC為菱形,從而得出AC=OD,根據(jù)圓的性質(zhì)可得OE=OC= AC= OA=,從而得出△AOC為等邊三角形,然后根據(jù)同弧所對的圓周角是圓心角的一半,可求得∠EOC,從而得出OE平分∠AOC,根據(jù)三線合一和銳角三角函數(shù)即可求出OF,從而求出EF.

解:連接OC

,OA=OD

∴四邊形AODC為菱形

AC=OD

OE=OC= AC= OA=

∴△AOC為等邊三角形

∴∠AOC=60°

∴∠EOC=2

OE平分∠AOC

OEAC

RtOFC中,cosEOC=

EF=OEOF=

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在ABC中,∠ACB=60°,AC=1,D是邊AB的中點,E是邊BC上一點.若DE平分ABC的周長,則DE的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線在坐標(biāo)系中的位置如圖所示,它與,軸的交點分別為,是其對稱軸上的動點,根據(jù)圖中提供的信息,給出以下結(jié)論:①,②的一個根,③若,,則.其中正確的有______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊的邊軸交于點,點是反比例函數(shù)圖像上的一點,且,則等邊的邊長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB16,點D與點A關(guān)于y軸對稱,tanACB,點EF分別是線段AD、AC上的動點,(點E不與點AD重合),且∠CEF=∠ACB

1)求AC的長和點D的坐標(biāo);

2)求證:;

3)當(dāng)△EFC為等腰三角形時,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,過原點的拋物線與軸交于另一點,拋物線頂點的坐標(biāo)為,其對稱軸交軸于點.

1)求拋物線的解析式;

2)如圖2,點為拋物線上位于第一象限內(nèi)且在對稱軸右側(cè)的一個動點,求使面積最大時點的坐標(biāo);

3)在對稱軸上是否存在點,使得點關(guān)于直線的對稱點滿足以點、、為頂點的四邊形為菱形.若存在,請求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著中央電視臺《朗讀者》節(jié)目的播出,“朗讀”為越來越多的同學(xué)所喜愛,西寧市某中學(xué)計劃在全校開展“朗讀”活動,為了了解同學(xué)們對這項活動的參與態(tài)度,隨機對部分學(xué)生進行了一次調(diào)查,調(diào)查結(jié)果整理后,將這部分同學(xué)的態(tài)度劃分為四個類別:.積極參與,.一定參與,.可以參與,.不參與.根據(jù)調(diào)查結(jié)果制作了如下不完整的統(tǒng)計表和統(tǒng)計圖.

學(xué)生參與“朗讀”的態(tài)度統(tǒng)計表

類別

人數(shù)

所占百分比

18

20

4

合計

請你根據(jù)以上信息,解答下列問題:

1______,______,并將條形統(tǒng)計圖補充完整;

2)該校有1500名學(xué)生,如果“不參與”的人數(shù)不超過150人時,“朗讀”活動可以順利開展,通過計算分析這次活動能否順利開展?

3)“朗讀”活動中,九年級一班比較優(yōu)秀的四名同學(xué)恰好是兩男兩女,從中隨機選取兩人在班級進行朗讀示范,試用畫樹狀圖法或列表法求所選兩人都是女生的概率,并列出所有等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,,相交于點,的中點,點邊上,且,為對角線上一點,當(dāng)對角線平分時,的值為(

A.1B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線ABxy軸分別相交于點B、A,點Cx軸上一點,以AB、BC為邊作平行四邊形ABCD,連接BD,BDBC,將△AOB沿x軸從左向右以每秒一個單位的速度運動,當(dāng)點O和點C重合時運動停止,設(shè)△AOB與△BCD重合部分的面積為S,運動時間為t秒,St之間的函數(shù)如圖(2)所示(其中0t≤2,2tmmtn時函數(shù)解析式不同).

1)點B的坐標(biāo)為   ,點D的坐標(biāo)為   ;

2)求St的函數(shù)解析式,并寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案