若用同一種正多邊形瓷磚鋪地面,能鋪滿地面的正多邊形是(     )

A.正五邊形 B.正六邊形  C.正七邊形 D.正八邊形


B【考點(diǎn)】平面鑲嵌(密鋪).

【分析】平面圖形鑲嵌的條件:判斷一種圖形是否能夠鑲嵌,只要看一看拼在同一頂點(diǎn)處的幾個(gè)角能否構(gòu)成周角.若能構(gòu)成360°,則說明能夠進(jìn)行平面鑲嵌;反之則不能.

【解答】解:∵用一種正多邊形鑲嵌,只有正三角形,正四邊形,正六邊形三種正多邊形能鑲嵌成一個(gè)平面圖案,

∴用同一種正多邊形瓷磚鋪地面,能鋪滿地面的正多邊形是正六邊形.

故選B.

【點(diǎn)評(píng)】用一種正多邊形鑲嵌,只有正三角形,正四邊形,正六邊形三種正多邊形能鑲嵌成一個(gè)平面圖案.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算:×=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


正數(shù)a的正的平方根叫做a的算術(shù)平方根,記作:,我們把≥0和a≥0叫做的兩個(gè)非負(fù)性,據(jù)此解決以下問題:

(1)若實(shí)數(shù)a、b滿足=0,求a+b的立方根.

(2)已知實(shí)數(shù)x、y滿足y=++2,求xy的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC內(nèi)一點(diǎn),且∠1=∠2,則∠BPC=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


探究:

(1)如圖①,∠1+∠2與∠B+∠C有什么關(guān)系?為什么?

(2)把圖①△ABC沿DE折疊,得到圖②,填空:∠1+∠2__________∠B+∠C(填“>”“<”“=”),當(dāng)∠A=40°時(shí),∠B+∠C+∠1+∠2=__________;

(3)如圖③,是由圖①的△ABC沿DE折疊得到的,如果∠A=30°,則x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣__________=__________,猜想∠BDA+∠CEA與∠A的關(guān)系為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,AB=AC,D是AB的中點(diǎn),且DE⊥AB于點(diǎn)D,AB=10,BC=4,則△BEC的周長(zhǎng)(     )

A.14     B.6       C.9       D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


的平方根為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AB=DE,AC=DC,BC=EC,DE與AC、AB分別交于點(diǎn)M、N,CE與AB交于點(diǎn)H,且∠A=∠BCE=40°,∠B=60°

(1)求證:△ABC≌△DEC;

(2)求證:AB∥CD;

(3)圖中與∠ACB相等的角一共有__________個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案