【題目】9分)如圖,已知點(diǎn)B、E、C、F在同一直線上,AB=DE,∠A=∠D,AC∥DF

求證:(1△ABC≌△DEF; (2BE=CF

【答案】證明:

1∵AC∥DF,

∴∠ACB=∠F………………………………2

△ABC△DEF中,,……4

∴△ABC≌△DEFAAS);………………………………………………………6

2∵△ABC≌△DEF,

∴BC=EF………………………………………………………………………8

∴BC-CE=EF-CE,

BE=CF………………………………………………………………………9

【解析】

試題證明:(1)∵AC∥DF

∴∠ACB∠F

△ABC△DEF

∴△ABC≌△DEF

(2) ∵△ABC≌△DEF

∴BC=EF

∴BC–EC=EF–EC

BE=CF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將正方形置于平面直角坐標(biāo)系中,其中邊在軸上,其余各邊均與坐標(biāo)軸平行.直線沿軸的負(fù)方向以每秒1個單位的速度平移,在平移的過程中,該直線被正方形的邊所截得的線段長為,平移的時間為(秒),的函數(shù)圖象如圖2所示,則圖1中的點(diǎn)的坐標(biāo)為__________,圖2中的值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,若平分,平分,且,則___________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸于點(diǎn)A,交直線x=6于點(diǎn)B.

1填空:拋物線的對稱軸為x=_________,點(diǎn)B的縱坐標(biāo)為__________(用含a的代數(shù)式表示);

2若直線ABx軸正方向所夾的角為45°時,拋物線在x軸上方,求的值;

3記拋物線在AB之間的部分為圖像G(包含A、B兩點(diǎn)),若對于圖像G上任意一點(diǎn),總有≤3,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACBC,∠ACB=90°,點(diǎn)D為邊AB上一點(diǎn),CD繞點(diǎn)D順時針旋轉(zhuǎn)90°至DECEAB于點(diǎn)G.已知AD=8,BG=6,點(diǎn)FAE的中點(diǎn),連接DF,求線段DF的長___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從A地到B地的公路需經(jīng)過C地,圖中AC=10千米,∠CAB=25°,CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.

(1)求改直的公路AB的長;

(2)問公路改直后比原來縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,直線x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),點(diǎn)B的橫坐標(biāo)為2.

圖1 圖2

(1)求AC兩點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;

(2)點(diǎn)D是直線AC上方拋物線上任意一點(diǎn),P為線段AC上一點(diǎn),且SPCD=2SPAD ,求點(diǎn)P的坐標(biāo);

(3)如圖2,另有一條直線y=-x與直線AC交于點(diǎn)MN為線段OA上一點(diǎn),∠AMN=∠AOM.點(diǎn)Qx軸負(fù)半軸上一點(diǎn),且點(diǎn)Q到直線MN和直線MO的距離相等,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=x-3x軸于點(diǎn)B,交y軸于點(diǎn)C,拋物線經(jīng)過點(diǎn)A(-1,0),B,C三點(diǎn),點(diǎn)Fy軸負(fù)半軸上,OF=OA.

(1)求拋物線的解析式;

(2)在第一象限的拋物線上存在一點(diǎn)P,滿足SABC=SPBC,請求出點(diǎn)P的坐標(biāo);

(3)點(diǎn)D是直線BC的下方的拋物線上的一個動點(diǎn),過D點(diǎn)作DEy軸,交直線BC于點(diǎn)E,①當(dāng)四邊形CDEF為平行四邊形時,求D點(diǎn)的坐標(biāo);

②是否存在點(diǎn)D,使CEDF互相垂直平分?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一張平行四邊形紙片ABCDAB<BC),要求利用所學(xué)知識將它變成一個菱形,甲、乙兩位同學(xué)的作法分別如下:對于甲、乙兩人的作法,可判斷(

A.甲、乙均正確B.甲、乙均錯誤C.甲正確,乙錯誤D.甲錯誤,乙正確

查看答案和解析>>

同步練習(xí)冊答案