【題目】把一張長(zhǎng)方形紙片ABCD沿EF折疊后ED與BC的交點(diǎn)為G、D、C分別在M、N的位置上,若∠EFG=55°,則∠1=_°,∠2=°.

【答案】70°;110°
【解析】解:∵一張長(zhǎng)方形紙片ABCD沿EF折疊后ED與BC的交點(diǎn)為G,D,C分別在M,N的位置上,
∴∠GEF=∠FED,
∵AD∥BC,∠EFG=55°,
∴∠FED=∠EFG=55°,
∵∠1+∠GEF+∠FED=180°,
∴∠1=180°﹣55°﹣55°=70°,
∵AD∥BC
∴∠1+∠2=180°,
∴∠2=180°﹣70°=110°.
故答案為:70°,110°.
根據(jù)折疊的性質(zhì)得出∠GEF=∠FED,根據(jù)二直線平行內(nèi)錯(cuò)角相等得出∠FED=∠EFG=55°,根據(jù)平角的定義得出∠1+∠GEF+∠FED=180°,從而得出∠1的度數(shù),然后再根據(jù)二直線平行,同旁內(nèi)角互補(bǔ)得出∠2的度數(shù)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】自開(kāi)展學(xué)生每天鍛煉1小時(shí)活動(dòng)后,我市某中學(xué)根據(jù)學(xué)校實(shí)際情況,決定開(kāi)設(shè)A:毽子,B:籃球,C:跑步,D:跳繩四種運(yùn)動(dòng)項(xiàng)目.為了了解學(xué)生最喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:

1)該校本次調(diào)查中,共調(diào)查了多少名學(xué)生?

2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

3)在本次調(diào)查的學(xué)生中隨機(jī)抽取1人,他喜歡跑步的概率有多大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列選項(xiàng)中.與xy2是同類(lèi)項(xiàng)的是( )
A.﹣2xy2
B.2x2y
C.xy
D.x2y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:小明熱愛(ài)數(shù)學(xué),在課外書(shū)上看到了一個(gè)有趣的定理——“中線長(zhǎng)定理”:三角形兩邊的平方和等于第三邊的一半與第三邊上的中線的平方和的兩倍.如圖1,在△ABC中,點(diǎn)DBC的中點(diǎn),根據(jù)“中線長(zhǎng)定理”,可得:

AB2AC2=2AD2+2BD2

小明嘗試對(duì)它進(jìn)行證明,部分過(guò)程如下:

解:過(guò)點(diǎn)AAEBC于點(diǎn)E,如圖2,在Rt△ABE中,AB2AE2BE2,

同理可得:AC2AE2CE2,AD2AE2DE2

為證明的方便,不妨設(shè)BDCDx,DEy

AB2AC2AE2BE2AE2CE2=……

(1)請(qǐng)你完成小明剩余的證明過(guò)程;

理解運(yùn)用:

(2) ① 在△ABC中,點(diǎn)DBC的中點(diǎn),AB=6,AC=4,BC=8,則AD=_______;

② 如圖3,⊙O的半徑為6,點(diǎn)A在圓內(nèi),且OA=2,點(diǎn)B和點(diǎn)C在⊙O上,且∠BAC=90°,點(diǎn)E、F分別為AOBC的中點(diǎn),則EF的長(zhǎng)為_(kāi)_______;

拓展延伸:

(3)小明解決上述問(wèn)題后,聯(lián)想到《能力訓(xùn)練》上的題目:如圖4,已知⊙O的半徑為5,以A(3,4)為直角頂點(diǎn)的△ABC的另兩個(gè)頂點(diǎn)B,C都在⊙O上,DBC的中點(diǎn),求AD長(zhǎng)的最大值.請(qǐng)你利用上面的方法和結(jié)論,求出AD長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年要實(shí)現(xiàn)大病保險(xiǎn)全覆蓋,中央財(cái)政安排城鄉(xiāng)醫(yī)療救助補(bǔ)助資金160億元,160億元這一數(shù)據(jù)用科學(xué)記數(shù)法表示為( )
A.16×109
B.1.6×1010
C.0.16×1011
D.1.6×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒,底面為矩形EFGH,如圖2.設(shè)小正方形的邊長(zhǎng)為x厘米.

(1)當(dāng)矩形紙板ABCD的一邊長(zhǎng)為90厘米時(shí),求紙盒的側(cè)面積的最大值;

(2)當(dāng)EHEF=7:2,且側(cè)面積與底面積之比為9:7時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(a﹣2)2+|b﹣3|=0,則(﹣a)b的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購(gòu)買(mǎi)一批足球,已知購(gòu)買(mǎi)2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買(mǎi)4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.

(1)求A,B兩種品牌的足球的單價(jià).

(2)求該校購(gòu)買(mǎi)20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).

(1)在圖中作出△ABC關(guān)于x軸的對(duì)稱圖形△A1B1C1
(2)寫(xiě)出點(diǎn)A1 , B1 , C1的坐標(biāo)(直接寫(xiě)答案)
A1
B1
C1
(3)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案