【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
【答案】D
【解析】
試題∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正確;
∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠DOH=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正確;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正確;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;
∵AB=AH,∠BAE=45°,
∴△ABH不是等邊三角形,
∴AB≠BH,
∴即AB≠HF,故⑤錯誤;
綜上所述,結(jié)論正確的是①②③④共4個.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC為4,面積為24,腰AC的垂直平分線EF分別交邊AC,AB于點E,F,若D為BC邊的中點,M為線段EF上一動點,則△CDM的周長的最小值為 ( 。
A.8B.10C.12D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明口袋中裝有個紅球、個白球、個黃球,每個球除顏色外其他均相同.從這個口袋中同時摸出兩個球,發(fā)生概率最小的事件是摸到( )
A. 都是紅球 B. 一個紅球,一個白球
C. 都是白球 D. 一個白球,一個黃球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),設(shè)客車離甲地的距離為y1千米,出租車離甲地的距離為y2千米,兩車行駛的時間為x小時,y1、y2關(guān)于x的函數(shù)圖像如下圖
所示:
(1)根據(jù)圖像,直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(2)若兩車之間的距離為S千米,請寫出S關(guān)于x的函數(shù)關(guān)系式;
(3)甲、乙兩地間有A、B兩個加油站,相距200千米,若客車進入A加油站時,出租車恰好進入B加油站,求A加油站離甲地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關(guān)注和重點發(fā)展的新興產(chǎn)業(yè).如圖是太陽能電池板支撐架的截面圖,其中線段AB、CD、EF表示支撐角鋼,太陽能電池板緊貼在支撐角鋼AB上且長度均為300cm,AB的傾斜角為30°,BE=CA=50cm,支撐角鋼CD、EF與地面接觸點分別為D、F,CD垂直于地面,FE⊥AB于點E.點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016黑龍江省齊齊哈爾市)如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3,以B為圓心,AB長為半徑畫圓B,點P在圓B上移動,連接AP,并將AP繞點A逆時針旋轉(zhuǎn)90°至Q,連接BQ,在點P移動過程中,BQ長度的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8,CB=6,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)當(dāng)t=2秒時,求PQ的長;
(2)求出發(fā)時間為幾秒時,△PQB是等腰三角形?
(3)若Q沿B→C→A方向運動,則當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖像,圖1是產(chǎn)品銷售量y(件)與時間t(天)的函數(shù)關(guān)系,圖2是一件產(chǎn)品的銷售利潤z(元)與時間t(天)的函數(shù)關(guān)系,已知日銷售利潤=日銷售量×每件產(chǎn)品的銷售利潤,下列結(jié)論錯誤的是( )。
A. 第24天的銷售量為200件B. 第10天銷售一件產(chǎn)品的利潤是15元
C. 第12天與第30天這兩天的日銷售利潤相等D. 第30天的日銷售利潤是750元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com