【題目】如圖,小明從路燈下A處向前走了5米,發(fā)現(xiàn)自己在地面上的影子長DE是2米,如果小明的身高為1.6米,那么路燈離地面的高度AB是( )
A.4米
B.5.6米
C.2.2米
D.12.5米
【答案】B
【解析】解:由圖知,DE=2米,CD=1.6米,AD=5米, ∴AE=AD+DE=5+2=7米
∵CD∥AB,
∴△ECD∽△EBA
∴ = ,即 = ,
解得AB=5.6(米).
故選B.
【考點精析】認(rèn)真審題,首先需要了解相似三角形的應(yīng)用(測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點間的舉例,常構(gòu)造相似三角形求解),還要掌握中心投影(手電筒、路燈和臺燈的光線可以看成是從一個點發(fā)出的,這樣的光線所形成的投影稱為中心投影;作一物體中心投影的方法:過投影中心與物體頂端作直線,直線與投影面的交點與物體的底端之間的線段即為物體的影子)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線y=(k>0與矩形兩邊AB、BC分 別交于點D、E,且BD=2AD﹒
(1)求此雙曲線的函數(shù)表達(dá)式及點E的坐標(biāo);
(2)若矩形OABC的對角線OB與雙曲線相交于點P,連結(jié)PC,求△POC的面積﹒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(1,6)和點B在反比例函數(shù)圖象上,AD⊥x軸于點D,BC⊥x軸于點C,DC=5.
(1)求反比例函數(shù)的表達(dá)式和點B的坐標(biāo);
(2)連接AB,在線段DC上是否存在一點E,使△ABE的面積等于5?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,以AC為直徑的⊙O分別交AB,BC于點D,E,點F在AB的延長線上,2∠BCF=∠BAC.
(1)求∠ADE的度數(shù).
(2)求證:直線CF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊菱形菜地ABCD中,對角線AC與BD相交于點O,若在菱形菜地內(nèi)均勻地撒上種子,則種子落在陰影部分的概率是( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AC為對角線,點E為AC上一點,連接EB,ED.
(1)求證:△BEC≌△DEC;
(2)延長BE交AD于點F,當(dāng)∠BED=120°時,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=60°,點M是AB的中點,P是對角線AC上的一個動點,若PM+PB的最小值是9,則AB的長是( )
A.6
B.3
C.9
D.4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,階梯圖的每個臺階上都標(biāo)著一個數(shù),從下到上的第1個至第4個臺階上依次標(biāo)著﹣4,﹣2,1,8,且任意相鄰四個臺階上數(shù)的和都相等.
嘗試:(1)求前4個臺階上數(shù)的和是多少?
(2)求第5個臺階上的數(shù)x是多少?
應(yīng)用: 求從下到上39個臺階上數(shù)的和.
發(fā)現(xiàn):試用含k(k為正整數(shù))的代數(shù)式表示出數(shù)“1”所在的臺階數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=kx+b的圖象如圖所示,則k,b的值可能為( )
A.k=3,b=3
B.k=3,b=﹣3
C.k=﹣3,b=3
D.k=﹣3,b=﹣3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com