如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,則與A相遇時,相遇點C的坐標是________.

(1,15)
分析:根據(jù)已知得出圖象經(jīng)過點(0.5,7.5),得出正比例函數(shù)解析式,以及S A=at+b,圖象經(jīng)過(0,10),(3,25),求出解析式即可,將兩解析式結合求出交點即可.
解答:若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,圖象是正比例函數(shù)解析式,
∴s=at,圖象經(jīng)過點(0.5,7.5),
∴s=15t,
S A=at+b,圖象經(jīng)過(0,10),(3,25),

,
∴S A=5t+10;

∴15t=5t+10;
∴t=1,S=15,
∴點C的坐標是(1,15).
故答案為:(1,15)
點評:此題主要考查了一次函數(shù)的應用以及待定系數(shù)法求一次函數(shù)解析式,根據(jù)已知得出解析式是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.
(1)B出發(fā)時與A相距
 
千米.
(2)B走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是
 
小時.
(3)B出發(fā)后
 
小時與A相遇.
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,
 
小時與A相遇,相遇點離B的出發(fā)點
 
千米.在圖中表示出這個相遇點C.
(5)求出A行走的路程S與時間t的函數(shù)關系式.(寫出過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.
(1)B出發(fā)時與A相距
 
千米.
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是
 
小時.
(3)B出發(fā)后
 
小時與A相遇.
(4)求出A行走的路程S與時間t的函數(shù)關系式.(寫出過程)
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,
 
小時與A相遇,相遇點離B的出發(fā)點
 
千米.在圖中表示出這個相遇點C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.
(1)B出發(fā)時與A相距
10
10
千米.
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是
1
1
小時.
(3)B出發(fā)后
3
3
小時與A相遇.
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,
12
13
12
13
小時與A相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時間的關系.
(1)B出發(fā)時與A相距
10
10
千米.
(2)B走了一段路后,自行車發(fā)生故障,進行修理,用時是
1
1
小時.
(3)B出發(fā)后
3
3
小時與A相遇.
(4)求出A行走的路程S與時間的函數(shù)關系式.
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,多少小時與A相遇?相遇點離B的出發(fā)點多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.
(1)B出發(fā)時與A相距
 
千米.
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是
 
小時.
(3)B出發(fā)后
 
小時與A相遇.
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,幾小時與A相遇,相遇點離B的出發(fā)點多少千米.在圖中表示出這個相遇點C,并寫出過程.

查看答案和解析>>

同步練習冊答案