精英家教網 > 初中數學 > 題目詳情

【題目】某校九年級舉行了一次中考體育模擬測試,測試成績總分40分,共分三個等級:40分~35分為A等,30分~34分為B等,30分以下為C等.從所有參加測試的學生中隨機的抽取20名學生的成績,制作出如下條形統(tǒng)計圖,請解答下列問題:

1)下列抽取20名學生的方法最合理的一種是   .(只需填上正確的序號)

抽取某班男、女各10名;隨機的抽取20名女生;從參加測試的學生中隨機抽取20名.

2)請補全條形統(tǒng)計圖;

3)若該校共有604名學生參加測試,請你用此樣本估計測試中A等和B等的學生人數之和.

【答案】(1);(2)詳見解析;(3453

【解析】

1)根據抽樣調查的可靠性:抽調查要具有廣泛性、代表性,可得答案;

2)根據所列數據統(tǒng)計可得;

3)總人數乘以樣本中AB等人數和所占比例可得.

解:(1)抽取20名學生的方法最合理的一種是:從參加測試的學生中隨機抽取20名,

2B等的人數為:9(人),C等的人數為:5(人),

∴補全條形圖如下:

3)估計測試中A等和B等的學生人數之和為604×453人.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】低碳生活,綠色出行是我們倡導的一種生活方式,某校為了解學生對共享單車的使用情況,隨機抽取部分學生進行問卷調查,并將這次調查的結果繪制了以下兩幅不完整的統(tǒng)計圖.

根據所給信息,解答下列問題:

1m   ;

2)補全條形統(tǒng)計圖;

3)這次調查結果的眾數是   ;

4)已知全校共3000名學生,請估計經常使用共享單車的學生大約有多少名?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6D在底邊BC上,且∠DAC=ACD,將△ACD沿著AD所在直線翻折,使得點C落到點E處,聯結BE,那么BE的長為______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABCD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.

(1)求證:ACF=ABD;

(2)連接EF,求證:EFCG=EGCB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限,點Bx軸的正半軸上.∠OAB90°OAABOB,OC的長分別是二元一次方程組的解(OBOC).

1)求點A和點B的坐標;

2)點P是線段OB上的一個動點(點P不與點OB重合),過點P的直線ly軸平行,直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R.設點P的橫坐標為t,線段QR的長度為m.已知t4時,直線l恰好過點C

①當0t3時,求m關于t的函數關系式;

②當m時,求點P的橫坐標t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(材料閱讀)

我們曾解決過課本中的這樣一道題目:

如圖1,四邊形ABCD是正方形,EBC邊上一點,延長BAF,使AFCE,連接DE,DF.……

提煉1:△ECD繞點D順時針旋轉90°得到△FAD

提煉2:△ECD≌△FAD;

提煉3:旋轉、平移、軸對稱是圖形全等變換的三種方式.

(問題解決)

1)如圖2,四邊形ABCD是正方形,EBC邊上一點,連接DE,將△CDE沿DE折疊,點C落在G處,EGAB于點F,連接DF

可得:∠EDF   °;AF,FEEC三者間的數量關系是   

2)如圖3,四邊形ABCD的面積為8ABAD,∠DAB=∠BCD90°,連接AC.求AC的長度.

3)如圖4,在△ABC中,∠ACB90°,CACB,點D,E在邊AB上,∠DCE45°.寫出AD,DEEB間的數量關系,并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點GOC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG

2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉過程中,當∠OAG′是直角時,求α的度數;

若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數,直接寫出結果不必說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點EAC的中點.

1)試判斷直線DE與⊙O的位置關系,并說明理由;

2)若⊙O的半徑為2,∠B50°,AC6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果關于x的不等式組至少有3個整數解,且關于x的分式方程的解為整數,則符合條件的所有整數a的取值之和為( 。

A.10B.9C.7D.3

查看答案和解析>>

同步練習冊答案