【題目】某校九年級舉行了一次中考體育模擬測試,測試成績總分40分,共分三個等級:40分~35分為A等,30分~34分為B等,30分以下為C等.從所有參加測試的學生中隨機的抽取20名學生的成績,制作出如下條形統(tǒng)計圖,請解答下列問題:
(1)下列抽取20名學生的方法最合理的一種是 .(只需填上正確的序號)
①抽取某班男、女各10名;②隨機的抽取20名女生;③從參加測試的學生中隨機抽取20名.
(2)請補全條形統(tǒng)計圖;
(3)若該校共有604名學生參加測試,請你用此樣本估計測試中A等和B等的學生人數之和.
科目:初中數學 來源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導的一種生活方式,某校為了解學生對共享單車的使用情況,隨機抽取部分學生進行問卷調查,并將這次調查的結果繪制了以下兩幅不完整的統(tǒng)計圖.
根據所給信息,解答下列問題:
(1)m= ;
(2)補全條形統(tǒng)計圖;
(3)這次調查結果的眾數是 ;
(4)已知全校共3000名學生,請估計“經常使用”共享單車的學生大約有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6點D在底邊BC上,且∠DAC=∠ACD,將△ACD沿著AD所在直線翻折,使得點C落到點E處,聯結BE,那么BE的長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限,點B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長分別是二元一次方程組的解(OB>OC).
(1)求點A和點B的坐標;
(2)點P是線段OB上的一個動點(點P不與點O,B重合),過點P的直線l與y軸平行,直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R.設點P的橫坐標為t,線段QR的長度為m.已知t=4時,直線l恰好過點C.
①當0<t<3時,求m關于t的函數關系式;
②當m=時,求點P的橫坐標t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(材料閱讀)
我們曾解決過課本中的這樣一道題目:
如圖1,四邊形ABCD是正方形,E為BC邊上一點,延長BA至F,使AF=CE,連接DE,DF.……
提煉1:△ECD繞點D順時針旋轉90°得到△FAD;
提煉2:△ECD≌△FAD;
提煉3:旋轉、平移、軸對稱是圖形全等變換的三種方式.
(問題解決)
(1)如圖2,四邊形ABCD是正方形,E為BC邊上一點,連接DE,將△CDE沿DE折疊,點C落在G處,EG交AB于點F,連接DF.
可得:∠EDF= °;AF,FE,EC三者間的數量關系是 .
(2)如圖3,四邊形ABCD的面積為8,AB=AD,∠DAB=∠BCD=90°,連接AC.求AC的長度.
(3)如圖4,在△ABC中,∠ACB=90°,CA=CB,點D,E在邊AB上,∠DCE=45°.寫出AD,DE,EB間的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉過程中,當∠OAG′是直角時,求α的度數;
②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數,直接寫出結果不必說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)試判斷直線DE與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果關于x的不等式組至少有3個整數解,且關于x的分式方程的解為整數,則符合條件的所有整數a的取值之和為( 。
A.﹣10B.﹣9C.﹣7D.﹣3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com