【題目】端午節(jié)前,小明爸爸去超市購買了大小、形狀、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此時從盒中隨機取出火腿粽子的概率為;媽媽從盒中取出火腿粽子3只、豆沙粽子7只送給爺爺和奶奶后,這時隨機取出火腿粽子的概率為

1)請你用所學知識計算:爸爸買的火腿粽子和豆沙粽子各有多少只;

2)若小明一次從盒內剩余粽子中任取2只,問恰有火腿粽子、豆沙粽子各1只的概率是多少.(用列表法或樹狀圖計算)

【答案】1)爸爸買了火腿粽子5只、豆沙粽子10只;(2

【解析】

1)設爸爸買的火腿粽子和豆沙粽子分別為x只、y只,然后根據(jù)概率的意義列出方程組,求解即可.

2)根據(jù)題意,列出表格或畫樹狀圖,然后根據(jù)概率公式列式計算即可得解.

解:(1)設爸爸買的火腿粽子和豆沙粽子分別為x只、y只,

根據(jù)題意得:,解得:

經檢驗符合題意.

爸爸買了火腿粽子5只、豆沙粽子10只.

2)由題可知,盒中剩余的火腿粽子和豆沙粽子分別為2只、3只,我們不妨把兩只火腿粽子記為a1、a2;3只豆沙粽子記為b1b2、b3,則可列出表格如下:


a1

a2

b1

b2

b3

a1


a1a2

a1b1

a1b2

a1b3

a2

a2a1


a2b1

a2b2

a2b3

b1

b1a1

b1a2


b1b2

b1b3

b2

b2a1

b2a2

b2b1


b2b3

b3

b3a1

b3a2

b3b1

b3b2


一共有10種情況,恰有火腿粽子、豆沙粽子各1只的有6種情況,

∴P(火腿粽子、豆沙粽子各1只)=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,我南海某海域A處有一艘捕魚船在作業(yè)時突遇特大風浪,船長馬上向我國漁政搜救中心發(fā)出求救信號,此時一艘漁政船正巡航到捕魚船正西方向的B處,該漁政船收到漁政求救中心指令后前去救援,但兩船之間有大片暗礁,無法直線到達,于是決定馬上調整方向,先向北偏東60°方向以每小時40海里的速度航行半小時到達C處,同時捕魚船低速航行到A點的正北2海里D處,漁政船航行到點C處時測得點D在南偏東53°方向上.

1)求CD兩點的距離;

2)漁政船決定再次調整航向前去救援,若兩船航速不變,并且在點E處相會合,求∠ECD的正弦值.(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是射線yx≥0)上一點,過點AABx軸于點B,以AB為邊在其右側作正方形ABCD,過點A的雙曲線yCD邊于點E,則的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關系如圖所示,下列結論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達終點時,甲離終點還有300米

其中正確的結論有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;

(3當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,E是正方形ABCDAB上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉90°,旋轉后角的兩邊分別與射線BC交于點F和點G

①線段DBDG的數(shù)量關系是   ;

②寫出線段BEBFDB之間的數(shù)量關系.

2)當四邊形ABCD為菱形,∠ADC60°,點E是菱形ABCDAB所在直線上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉120°,旋轉后角的兩邊分別與射線BC交于點F和點G

①如圖2,點E在線段AB上時,請?zhí)骄烤段BE、BFBD之間的數(shù)量關系,寫出結論并給出證明;

②如圖3,點E在線段AB的延長線上時,DE交射線BC于點M,若BE1,AB2,直接寫出線段GM的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,關于x的二次函數(shù)yax22axa0)的頂點為C,與x軸交于點O、A,關于x的一次函數(shù)y=﹣axa0).

1)試說明點C在一次函數(shù)的圖象上;

2)若兩個點(ky1)、(k+2y2)(k≠0±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;

3)若點E是二次函數(shù)圖象上一動點,E點的橫坐標是n,且﹣1≤n≤1,過點Ey軸的平行線,與一次函數(shù)圖象交于點F,當0a≤2時,求線段EF的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtACB中,∠C90°,DAB上一點,以BD為直徑的⊙OAC相切于點E,交BC于點F,連接DF.

(1)求證:DF2CE;

(2)BC3sinB,求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,等腰的底邊軸上,已知,拋物線(其中)經過三點,雙曲線(其中)經過點軸,軸,垂足分別為

1)求出的值;當為直角三角形時,請求出的表達式;

2)當為正三角形時,直線平分,求的取值范圍;

3)拋物線(其中)有一時刻恰好經過點,且此時拋物線與雙曲線(其中)有且只有一個公共點(其中),我們不妨把此時刻的記作,請直接寫出拋物線(其中)與雙曲線(其中)有一個公共點時的取值范圍.(是已知數(shù))

查看答案和解析>>

同步練習冊答案