【題目】已知RtABC中,AC4,BC3,∠ACB90°,以AC為一邊在RtABC外部作等腰直角三角形ACD,則線段BD的長為_____

【答案】7

【解析】

分三種情形討論:(1)如圖1中,以點C所在頂點為直角時;(2)如圖2中,以點D所在頂點為直角時;(3)如圖3中,以點A所在頂點為直角時.

1)如圖1中,以點C所在頂點為直角時.

AC=CD=4,BC=3,∴BD=CD+BC=7

2)如圖2中,以點D所在頂點為直角時,作DEBCE,連接BD

RtBDEDE=2BE=5,∴BD;

3)如圖3中,以點A所在頂點為直角時,作DEBCE,

RtBDE中,DE=4BE=7,∴BD

故答案為:7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCADE都是等腰直角三角形,∠BAC=∠DAE90°,ABAC4OAC中點,若點D在直線BC上運動,連接OE,則在點D運動過程中,線段OE的最小值是為(  )

A.B.C.1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是胡老師帶領(lǐng)學(xué)生,探究SSA是否能判定兩個三角形全等的過程,請完成下列填空.

如圖:已知,在中,________,(公共邊),,( ,,( ),則滿足兩邊及一邊的對角分別相等,即滿足________________,很顯然:________,(填全等于不全等于)下結(jié)論:SSA________(填不能)判定兩個三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等腰直角三角形,∠BAC=90°BE是∠ABC的平分線,DEBC,垂足為D.

1)請你寫出圖中所有的等腰三角形;

2)請你判斷ADBE垂直嗎?并說明理由.

3)如果BC=10,求AB+AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】、乙兩位同學(xué)進(jìn)行長跑訓(xùn)練,甲和乙所跑的路程S(單位:米)與所用時間t(單位:秒)之間的函數(shù)圖象分別為線段OA和折線OBCD.則下列說法正確的是( )

A. 兩人從起跑線同時出發(fā),同時到達(dá)終點

B. 跑步過程中,兩人相遇一次

C. 起跑后160秒時,甲、乙兩人相距最遠(yuǎn)

D. 乙在跑前300米時,速度最慢

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著中國傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場決定開展歡度端午,回饋顧客的讓利促銷活動,對部分品牌粽子進(jìn)行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1在等腰Rt△ABC,BAC=90°EAC上(且不與點A、C重合.在ABC的外部作等腰Rt△CED使CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時連接AE,求證AF=AE;

3如圖3,CED繞點C繼續(xù)逆時針旋轉(zhuǎn)當(dāng)平行四邊形ABFD為菱形,CEDABC的下方時,AB=2,CE=2,求線段AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖a是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖b的形狀,拼成一個正方形.

1圖b中的陰影部分面積為 ;

觀察圖b,請你寫出三個代數(shù)式,,mn之間的等量關(guān)系是 ;

3若x+y=6,xy=2.75,利用提供的等量關(guān)系計算:xy=

4實際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖C,它表示了2+3mn+=m+n)(2m+n,試畫出一個幾何圖形的面積是+4ab+3,并能利用這個圖形將+4ab+3進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案