【題目】先化簡,再求值:5(4a2﹣2ab3)﹣4(5a2﹣3ab3),其中a=﹣1,b=2.

【答案】解:原式=20a2﹣10ab3﹣20a2+12ab3
=2ab3
當a=﹣1,b=2時,原式=﹣16.
【解析】原式去括號合并得到最簡結果,把a與b的值代入計算即可求出值.
【考點精析】利用代數(shù)式求值和整式加減法則對題目進行判斷即可得到答案,需要熟知求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入;整式的運算法則:(1)去括號;(2)合并同類項.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABDC,ADBCE,FDB上兩點且BFDE,若∠AEB=120°,∠ADB=30°,則∠BCF= ( 。

A. 150° B. 40° C. 80° D. 90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,C的半徑為r,P是與圓心C不重合的點,點P關于C的反稱點的定義如下:若在射線CP上存在一點P,滿足CP+CP=2r,則稱P為點P關于C的反稱點,如圖為點P及其關于C的反稱點P的示意圖.特別地,當點P與圓心C重合時,規(guī)定CP=0.

(1)當O的半徑為1時.

分別判斷點M(2,1),N(,0),T(1,)關于O的反稱點是否存在?若存在,求其坐標;

點P在直線y=x+2上,若點P關于O的反稱點P存在,且點P不在x軸上,求點P的橫坐標的取值范圍;

(2)C的圓心在x軸上,半徑為1,直線y=x+2與x軸、y軸分別交于點A,B,若線段AB上存在點P,使得點P關于C的反稱點PC的內(nèi)部,求圓心C的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的一塊地,∠ADC=90°AD=4m,CD=3m,AB=13m,BC=12m,求這塊地的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小林從天臺柑桔場以2/kg的成本價購進1000kg的柑桔,在銷售過程中有10%的柑桔會損壞不能出售,如果小林想要獲得520元的利潤,則出售柑桔時,每千克柑桔定價為(  )

A. 2.8 B. 2.7 C. 2.6 D. 2.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A,B,C是數(shù)軸上三點,O為原點,點C對應的數(shù)為3,BC=2,AB=6.

(1)求點A,B對應的數(shù);

(2)動點M,N分別同時從AC出發(fā),分別以每秒3個單位和1個單位的速度沿數(shù)軸正方向運動.P為AM的中點,Q在CN上,且CQ=CN,設運動時間為tt > 0).

①求點P,Q對應的數(shù)(用含t的式子表示);

②t為何值時OP=BQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】強強想了很久才想通下面這道題,你能很快想出來嗎?在平面直角坐標系中,有一點Pab),若ab=0,則點P的位置在(  。

A. 原點 B. 橫軸上 C. 縱軸上 D. 坐標軸上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級某班同學在慶祝2015年元旦晚會上進行抽獎活動.在一個不透明的口

袋中有三個完全相同的小球,把它們分別標號1、2、3.隨機摸出一個小球記下標號后放回搖勻,再從中隨

機摸出一個小球記下標號.

(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次摸出小球上的標號的所有結果;

(2)規(guī)定當兩次摸出的小球標號相同時中獎,求中獎的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的內(nèi)角∠BAD、CDA的角平分線交于點EABC、BCD的角平分線交于點F

1)若∠F=70°,則∠ABC+BCD= ______ °;E= ______ °

2)探索∠E與∠F有怎樣的數(shù)量關系,并說明理由;

3)給四邊形ABCD添加一個條件,使得∠E=F,所添加的條件為______

查看答案和解析>>

同步練習冊答案