【題目】如圖所示,在數(shù)軸上的三個點、,表示的數(shù)分別為-3、-22,試回答下列問題:

1,兩點間的距離是______

2)若點與點的距離是8,則點表示的數(shù)是多少?

3)若將數(shù)軸折疊,使點與點重合,則點與哪個數(shù)重合?

【答案】(1)5;(2)6或-10;(3)點B與表示1的點重合.

【解析】

1A,C兩點間的距離是:2--3),計算即可求解;

2)設(shè)E表示的數(shù)是x,則|x+2|=8,解方程即可求得x的值;

3)首先確定對稱點,然后可以確定B的對稱點.

解:(1A,C兩點間的距離是:;

故答案為:5.

2)設(shè)E表示的數(shù)是x,則|x+2|=8,

解得:

點表示的數(shù)是6-10;

3AC重合,則對稱點表示的數(shù)是:-0.5,

∴點B與表示1的點重合.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在四邊形ABCD,AD//BC ,BC=4,DC=3AD=6.動點P從點D出發(fā),沿射線DA的方向,在射線DA上以每秒2兩個單位長的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長的速度向點B運動,P、Q分別從點D,C同時出發(fā),當點Q運動到點B,P隨之停止運動.設(shè)運動的時間為t().

(1)設(shè)的面積為,直接寫出之間的函數(shù)關(guān)系式是____________(不寫取值范圍).

(2)B,P,Q三點為頂點的三角形是等腰三角形時,求出此時的值.

(3)當線段PQ與線段AB相交于點O,2OA=OB,直接寫出=_____________.

(4)是否存在時刻,使得若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB在數(shù)軸上分別表示有理數(shù)a、bA、B兩點之間的距離表示為AB,在數(shù)軸上AB兩點之間的距離AB|ab|

利用數(shù)形結(jié)合思想回答下列問題:

(1)數(shù)軸上表示13兩點之間的距離   

(2)數(shù)軸上表示﹣12和﹣6的兩點之間的距離是   

(3)數(shù)軸上表示x1的兩點之間的距離表示為   

(4)x表示一個有理數(shù),且﹣4x2,則|x2|+|x+4|   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于任意四個有理數(shù)a,bc,d可以組成兩個有理數(shù)對(a,b)與(cd.我們規(guī)定: a,bc,d=bcad.例如:(123,4=2×31×4=2.根據(jù)上述規(guī)定解決下列問題:

1)有理數(shù)對(2,33,-2= ;

2)若有理數(shù)對(-32x11,x+1=12,則x= ;

3)當滿足等式(-3,2x1k,xk=32kx是整數(shù)時,求整數(shù)k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為舉辦校園文化藝術(shù)節(jié),甲、乙兩班準備給合唱同學(xué)購買演出服裝(一人一套),兩班共92(其中甲班比乙班人多,且甲班不到90),下面是供貨商給出的演出服裝的價格表:

購買服裝的套數(shù)

1套至45

46套至90

91套以上

每套服裝的價格

60

50

40

如果兩班單獨給每位同學(xué)購買一套服裝,那么一共應(yīng)付5020元.

(1)甲、乙兩班聯(lián)合起來給每位同學(xué)購買一套服裝,比單獨購買可以節(jié)省多少錢?

(2)甲、乙兩班各有多少名同學(xué)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結(jié)論:①AD=BC;②BD、AC互相平分;四邊形ACED是菱形.其中正確的個數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線相交于點O,且ADAB,過點OOEACAD于點E,連接CE.若平行四邊形ABCD的周長為20,則△CDE的周長是(  )

A. 10B. 11C. 12D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c經(jīng)過A、B、C三點,已知B(4,0),C(2,﹣6).

(1)求該拋物線的解析式和點A的坐標;

2)點Dm,n)(1m2)在拋物線圖象上,當△ACD的面積為時,求點D的坐標;

(3)在(2)的條件下,設(shè)拋物線的對稱軸為l,點D關(guān)于l的對稱點為E,能否在拋物線圖象和l上分別找到點P、Q,使得以點D、E、P、Q為頂點的四邊形為平行四邊形?若能,求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校一棟5層的教學(xué)大樓,第一層沒有教室,二至五層,每層樓有6間教室,進出這棟大樓共有兩道大小相同的大門和一道小門(平時小門不開).安全檢查中,對這3道門進行了測試:當同時開啟一道大門和一道小門時,3分鐘內(nèi)可以通過540名學(xué)生,若一道大門平均每分鐘比一道小門可多通過60名學(xué)生.

1)求平均每分鐘一道大門和一道小門各可以通過多少名學(xué)生?

2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5分鐘內(nèi)安全撤離.這棟教學(xué)大樓每間教室平均有45名學(xué)生,問:在緊急情況下只開啟兩道大門是否可行?為什么?3道門都開啟呢?

查看答案和解析>>

同步練習冊答案