(2011•南京)從3名男生和2名女生中隨機(jī)抽取2014年南京青奧會志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.
解:(1)5名學(xué)生中有2名女生,,所以抽取1名,恰好是女生的概率為;
(2)共有20種情況,恰好是1名男生和1名女生的情況數(shù)有12種,所以概率為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一種彩票有48個數(shù),編號從,每次搖獎開一個號碼,買中號就中獎,小明的父母為買彩票的事爭論,小明也參與了,他們意見正確的是                    (   )
A.父親認(rèn)為買很久不開的數(shù)字合理
B.母親認(rèn)為買最常開的數(shù)字合理
C.小明認(rèn)為48個數(shù)字的開獎率是一樣的
D.父母均認(rèn)為48個數(shù)字開獎率的可能性不一樣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小英和小明姐弟二人準(zhǔn)備一起去觀看端午節(jié)龍舟賽.但因家中臨時有事,必須留下一人在家,于是姐弟二人采用游戲的方式來確定誰去看龍舟賽.游戲規(guī)則是:在不透明的口袋中分別放入2個白色和1個黃色的乒乓球,它們除顏色外其余都相同.游戲時先由小英從口袋中任意摸出1個乒乓球記下顏色后放回并搖勻,再由小明從口袋中摸出1個乒乓球,記下顏色.如果姐弟二人摸到的乒乓球顏色相同.則小英贏,否則小明贏.
(1)請用樹狀圖或列表的方法表示游戲中所有可能出現(xiàn)的結(jié)果.
(2)這個游戲?qū)τ螒螂p方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(9分)光明中學(xué)十分重視中學(xué)生的用眼衛(wèi)生,并定期進(jìn)行視力檢測.某次檢測設(shè)有A、B兩處檢測點,甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一處檢測視力.
(1)求甲、乙、丙三名學(xué)生在同一處檢測視力的概率;
(2)求甲、乙、丙三名學(xué)生中至少有兩人在B處檢測視力的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

.有8只型號相同的杯子,其中一等品5只,二等品2只和三等品1只,從中隨機(jī)抽取1只杯子,恰好是一等品的概率是__________.    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(6分)在△ABC和△DEF中,∠C=∠F=90°.有如下五張背面完全相同的紙牌①、②、③、④、⑤,其正面分別寫有五個不同的等式,小民將這五張紙牌背面朝上洗勻后先隨機(jī)摸出一張(不放回),再隨機(jī)摸出一張.請結(jié)合以上條件,解答下列問題.
(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌用①、②、③、④、⑤表示);
(2)用兩次摸牌的結(jié)果和∠C=∠F=90°作為條件,求能滿足△ABC和△DEF全等的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了加強(qiáng)食品安全管理,有關(guān)部門對某大型超市的甲、乙兩種品牌食用油共抽
18瓶進(jìn)行檢測,檢測結(jié)果分成“優(yōu)秀”、“合格”、“不合格”三個等級,數(shù)據(jù)處理后制成以
下折線統(tǒng)計圖和扇形統(tǒng)計圖.
⑴甲、乙兩種品牌食用油各被抽取了多少瓶用于檢測?
⑵在該超市購買一瓶乙品牌食用油,請估計能買到“優(yōu)秀”等級的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某校對1200名女生的身高進(jìn)行了測量,身高在1.58~1.63(單位:m)這一小組的頻率為0.25,則該組的人數(shù)為
A.150人B.300人C.600人D.900人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖有兩個轉(zhuǎn)盤,每個轉(zhuǎn)盤都分為3個相同大小的扇形區(qū)域,分別用序號1,2,3標(biāo)出。現(xiàn)轉(zhuǎn)動兩個轉(zhuǎn)盤,等轉(zhuǎn)盤停止轉(zhuǎn)動時,指針指向每個區(qū)域的可能性相等(不計指針與兩個區(qū)域交線重合的情形),將所得區(qū)域的序號相乘,比較所得積為奇數(shù)和偶數(shù)的概率的大小。有人說:因為兩個轉(zhuǎn)盤中奇數(shù)序號比偶數(shù)序號多,顯然所得積為奇數(shù)的概率大,你同意他的說法嗎?請說明理由。

查看答案和解析>>

同步練習(xí)冊答案