【題目】D為等腰Rt△ABC斜邊AB的中點(diǎn),DM⊥DN,DM,DN分別交BC,CA于點(diǎn)E,F(xiàn).
(1)當(dāng)∠MDN繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),求證:DE=DF.
(2)若AB=2,求四邊形DECF的面積.
【答案】(1)證明見解析.(2)。
【解析】分析:(1)連CD,根據(jù)等腰直角三角形的性質(zhì)得到CD平分∠ACB,CD⊥AB,∠A=45°,CD=DA,則∠BCD=45°,∠CDA=90°,由DM⊥DN得∠EDF=90°,根據(jù)等角的余角相等得到∠CDE=∠ADF,根據(jù)全等三角形的判定易得△DCE≌△ADF,即可得到結(jié)論;(2)由△DCE≌△ADF,則S△DCE=S△ADF,于是四邊形DECF的面積=S△ACD,由而AB=2可得CD=DA=1,根據(jù)三角形的面積公式易求得S△ACD,從而得到四邊形DECF的面積.
本題解析:
(1)連CD,如圖,
∵D為等腰Rt△ABC斜邊AB的中點(diǎn),
∴CD平分∠ACB,CD⊥AB,∠A=45°,CD=DA,
∴∠BCD=45°,∠CDA=90°,
∵DM⊥DN,
∴∠EDF=90°,
∴∠CDE=∠ADF,
在△DCE和△ADF中,
,
∴△DCE≌△ADF(ASA),
∴DE=DF;
(2)∵△DCE≌△ADF,
∴S△DCE=S△ADF,
∴四邊形DECF的面積=S△ACD,
而AB=2,
∴CD=DA=1,
∴四邊形DECF的面積=S△ACD=CDDA=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各數(shù):3,0,﹣5,0.48,﹣(﹣7),﹣|﹣8|,(﹣4)2中,負(fù)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲,乙兩個(gè)不透明口袋中各裝有10個(gè)和3個(gè)形狀大小完全相同的紅色小球,則從中摸到紅色小球的概率是P甲_____P乙(填“>”,“<”或“=”);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D沿BC自B向C運(yùn)動(dòng)(點(diǎn)D與點(diǎn)B、C不重合),作BE⊥AD于E,CF⊥AD于F,則BE+CF的值( )
A.不變 B.增大 C.減小 D.先變大再變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.能夠完全重合的三角形是全等三角形B.面積相等的三角形是全等三角形
C.周長相等的三角形是全等三角形D.所有的等邊三角形都是全等三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】判斷下列各括號里未知數(shù)的值,哪一個(gè)是前面方程的解.
(1)5x=x+2(x=-1, );
(2) (x=1,x=-1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com